
Modelit
Elisabethdreef 5

4101 KN Culemborg
+31(345)531717

info@modelit.nl
www.modelit.nl

Modelit Application
Framework for Matlab

Version:
Date:

2008_01
August 13, 2008

Version: 2008_01
Date: August 13, 2008

Manual: Modelit Application Framework for Matlab
Authors: Nanne van der Zijpp

Kees-Jan Hoogland
Copyright: 2008, Modelit

Contact: info@modelit.nl
www.modelit.nl

ii

http://www.modelit.nl/
mailto:info@modelit.nl

Table of Contents
1 Introduction .. 1

1.1 Objective of the Modelit Application Framework for Matlab 1
1.2 Introducing the application framework ... 1
1.3 On-line help ... 3
1.4 System requirements ... 3
1.5 How to proceed from here ... 3

2 Installation ... 4
3 Templates for applications based on the framework .. 5

3.1 Simple template ... 5
3.2 Advanced template .. 6
3.3 Example application: the game of GO ... 12

4 Specifying dependency trees ... 13
4.1 Introduction .. 13
4.2 Dependency matrix .. 13
4.3 Specifying the dependency matrix: dependency tree 14
4.4 Evaluating the update tree ... 15
4.5 Overview ... 16

5 Reference manual ... 19
5.1 Introduction .. 19
5.2 Methods of the undoredo object .. 19

5.2.1 cleanupdisk ... 19
5.2.2 closegroup ... 19
5.2.3 deletequeue .. 20
5.2.4 display .. 20
5.2.5 fieldnames ... 21
5.2.6 flush .. 21
5.2.7 getdata .. 22
5.2.8 getsignature .. 23
5.2.9 iscommitted .. 23
5.2.10 isempty ... 24
5.2.11 isemptyqueue ... 24
5.2.12 isfield .. 24
5.2.13 isopen ... 24
5.2.14 label .. 25
5.2.15 logbookentry .. 25
5.2.16 redo .. 27
5.2.17 setcommitted .. 27
5.2.18 setdata .. 27
5.2.19 setdepend ... 28
5.2.20 setlabel .. 29
5.2.21 store .. 29
5.2.22 subsasgn .. 30
5.2.23 subsref ... 30
5.2.24 undo .. 30
5.2.25 undoredo ... 31

5.3 Auxiliary functions .. 32
5.3.1 dispupd ... 32
5.3.2 evaldepend .. 33
5.3.3 getpostponed .. 34
5.3.4 isregistered ... 35

iii

5.3.5 setpostponed .. 35
5.3.6 logbookgui ... 35
5.3.7 undomenu .. 37
5.3.8 ur_getopt ... 39

6 Advanced topics .. 40
6.1 Design decisions ... 40

iv

Modelit Application Framework for Matlab

1 Introduction

1.1 Objective of the Modelit Application Framework for Matlab

The Modelit Application Framework for Matlab (in short: Application Framework) has been designed for Matlab
developers who want to provide their Matlab applications with intuitive and powerful user-interfaces.

Matlab developers can benefit from the Application Framework in two ways:
• Using the framework cuts costs for development and maintenance;
• Applications built with the framework have a number of user friendly features that come at no cost.

Efficiency gains in application development and maintenance
The Application Framework separates data storage and visualization. Proper use of the framework will lead to
efficiency gains that grow exponentially with the complexity of the interface one is creating. The following factors
contribute to these gains:
• Less technical design decisions;
• Less code and less complexity leading to time savings at implementation;
• Flexibility to expand the interface with extra workspace variables or interface components;
• Reduce risks for error and facilitate testing;
• Designing and building applications in a uniform way facilitates working together on one project and

transfering maintenance from one person to another.

Features implemented by the framework
All applications based on the framework automatically benefit from a number of built in features:
• Undo en redo;
• Load and save mechanism for databases;
• Automated update mechanism for the user interface after the data are changed;
• Timed backups;
• Crash recovery;
• Automatic restore interface settings when interface is closed and re-opened.

1.2 Introducing the application framework

The best way to find out what the application framework is about is to consider a few examples.

First example
Consider the commands entered to the Matlab prompt below and their output:

>> a=1:10
a =
 1 2 3 4 5 6 7 8 9 10
>> a=undoredo(a)
Undoredo object
 1 2 3 4 5 6 7 8 9 10
>> a(5)=50
Undoredo object
 1 2 3 4 50 6 7 8 9 10
>> a=undo(a)
Undoredo object
 1 2 3 4 5 6 7 8 9 10

1

Modelit Application Framework for Matlab

This example uses the function undoredo. In fact undoredo is the constructor for the undoredo object that is central
to the Modelit Application Framework for Matlab. The example illustrates the following properties of the undoredo
object:
• You can transform any Matlab variable to an undoredo object. In other words an undoredo object is initialized

with a Matlab variable;
• After initialization you can modify or refer to undoredo objects as if they were ordinary Matlab variables;
• Modifications made to an undoredo object may be undone by applying the undo method.

Second example
Create a function view.m that contains the following lines:

function view(signature,data,ind)
plot(data)

Now type the following commands on the Matlab prompt:

>> a=1:10;
>> a=undoredo(a,'display',@view);
>> dummy=flush(a);
>> a(3)=10;
>> a(7)=[];
>> dummy=flush(a);

Figure 1: Figures that appear with the example

This example reveals another property of the undoredo object: A displayfunction that visualizes or otherwise
deals with the data contents may be attached to it. In the example the displayfunction is specified when the
undoredo object is initialized. A flush command is needed to trigger the display function, this makes it possible to
specify a group of changes before the interface is updated.

- End of examples -

In a nutshell these examples explain what the Application Framework is about: it allows a Matlab programmer to
separate the database of an application from the visualization. In more complex applications the vector "a" of the
example will be replaced with a more complex variable, usually a structure, and the display function is more
complex, but the basic ideas remain the same.

2

Modelit Application Framework for Matlab

1.3 On-line help

PDF documentation
The current document provides the user guide and reference manual and is provided as a PDF document.

Manual pages
Large parts of the reference manual included in this document are available as manual pages of the m-functions
included in the Application Framework. They can be retrieved by typing the following command on the command
line.

>> help <functionname>

1.4 System requirements

The Modelit Framework for Matlab has been tested with Matlab R2006b, R2007a and R2007b. The framework
does not use any undocumented Matlab features and therefore should also work with future Matlab versions.

Any application based on the Application Framework can be compiled to standalone applications with the Matlab
Compiler, and works with other builder products, such as the Matlab Builder for Java.

The Application Framework works seamlessly with other toolboxes and subroutine libraries provided by Modelit.
Two toolboxes are particularly useful when creating user interfaces:
• Modelit Layout Manager. This toolbox supports the design of modular and resizable GUI's. The toolbox

allows specifying the position of GUI elements relative to frames using normalized coordinates, pixel
coordinates or grid position. It also automates the computation of frame sizes and the nesting of frames;

• Modelit User Interface Components Toolbox for Matlab. This toolbox offers access to interface elements
such as tabbed panes, sortable tables, trees, comboboxes with autocompletion and so forth without the need
to switch to a different programming language or complex code.

1.5 How to proceed from here

Over the years the Application Framework has been applied in many applications. Experience has learnt that all
applications can be fit in a specific template. This template is described in chapter 3. It is highly recommended to
apply this template for your first applications.

Depending on your needs you may read the following chapters:
• Chapter 2 contains all information for installing the Application Framework;
• Chapter 3 explains the ideas of the framework, gives examples and provides templates;
• Chapter 4 explains the backgrounds of dependency trees;
• Chapter 5 contains the reference manual;
• Chapter 6 discusses a number of advanced topics.

3

Modelit Application Framework for Matlab

2 Installation

Installing the Modelit Application Framework consists of copying the directories included in the m-file distribution
to target directories on your system and including these directories in your Matlab path. For convenience a file
install.m that sets the path is included.

Follow the next steps to install the Modelit Application Framework for Matlab:

1. Unzip the files from the MAF.zip file.
This creates a folder ‘Modelit’ with subdirectories;

2. Find and run install.m. This prints Matlab code that will include the required directories in your Matlab
path on the console. These lines should be copied to your startup.m file;

3. Copy these lines to the startup.m file;
4. Run startup.m or restart Matlab.

You may verify the installation by typing:

a=undoredo(1:3)
a(2)=20
a=undo(a)

This is what you should see if you type the commands one by one:

>> a=undoredo(1:3)
Undoredo object
 1 2 3
>> a(2)=20
Undoredo object
 1 20 3
>> a=undo(a)
Undoredo object
 1 2 3

4

Modelit Application Framework for Matlab

3 Templates for applications based on the framework

3.1 Simple template

Characteristics:
• Only utilizes separation between database and interface;
• No undo/redo;
• No automatic detection of interface elements that require an update;
• No figure settings.

The template contains the following elements:
• Create an application entrypoint;
• Initialize a database;
• Create a figure and define callbacks;
• Define a display function;
• Initialize of the undoredo object;
• Force painting the interface for the first time.

Below each element of the template is explained in some more detail. In the next section a complete m-file
listing of a simple example application is given. This file is also included in the source code distribution as the file
simple.m

Create an application entry point
An application is started by running a specific function. Let's call this function myApplic. We create a file
myApplic.m and enter the first line:

function myApplic

Initialize a database
It is recommended to store the database in a structure. Probably your application will have menu items titled
"load" and "save" that load and save the workspace structure as well. When the application starts, an empty
database needs to be created. Typically your application will contain a function that takes care of this, let's call
this function "init_db". Your code will contain a line that refers to this function and looks like:

dbdata=init_db;

Create a figure and define callbacks
Your application will probably open a figure when its starts. It is generally a good idea to create a function that
takes care of initializing this figure. This function creates the figure and all elements in it including their callbacks.
The next line we add to our function is:

HWIN=create_fig;

The callbacks need to be able to retrieve the central database of the application, for this purpose it is
recommended to store this datastructure as the userdata of the main figure window and define a function that
retrieves this data. For example:

function db=get_db
HWIN=findobj('tag','MAINWINDOW');
db=get(HWIN,'userdata');

A typical callback looks as follows:
function callback(obj,event)
%retrieve database

5

Modelit Application Framework for Matlab

db=get_db;
%modify database
db.field=...
%display modified data
db=flush(db);
%store the database again
store(db);

Define a display function
The display function is called every time the central database, which will be defined in the next step, is modified.
A display function is always called with 3 arguments: "signature", "data" and "index". For a simple application
you only need the "data" argument. This argument passes the database to the display function. So your code
must contain a function with the following signature:

function view(signature,data,upd)

Initialize the undoredo object
We need to initialize an undoredo object in specify the following information:
• The initial data. This is the structure dbdata that was created above;
• The display function. This is the function view as defined above;
• The location where the database is stored. The most common place is to store the database is in the

userdata of the main figure of the application. For this purpose we must specify the windowhandle HWIN.

The code that does the job is:

db=undoredo(dbdata,...
'display',@view,...
'storehandle',HWIN)

Force painting the interface for the first time
Normally changes in the database will trigger the display function, but when the interface is initialized we need to
do it ourselves. Therefore we will call the flush method.

db=flush(db);

3.2 Advanced template

In this section we present a template that contains most of the functionality of the Application Framework. You
may not need all this functionality directly, but parts of the template may be omitted.

The template contains the following elements:
• Create an application entry point;
• Create a figure and define callbacks;
• Initialize a database;
• Initialize the undoredo object for the database;
• Define a dependency tree for the database;
• Initialize user preferences;
• Initialize the undoredo object for the user preferences;
• Define a dependency tree for the user preferences;
• Define a display function;
• Define undo and redo functions;
• Define load and save functions;
• Provide a function that is called when the figure is closed;
• Provide a function that is called when the figure is deleted;

6

Modelit Application Framework for Matlab

• Force painting the interface for the first time.

In the table below the function "main" initializes the interface. A function "create_fig" will create all handle graphic
objects and install the callbacks and needs to be supplied by you. Examples of GUI callbacks are included in the
template. The functions in the following table are needed by the function “main”.

In the source code distribution a file advanced.m is included in the examples directory. This file includes the
template, complemented with a few lines of code that implement a simple GUI.

At first sight the template might look somewhat elaborate, but if you copy and adapt the template, you'll find that
most of the template can be re-used, so that the amount of code that you need to provide yourself to get your
first example running is very limited.

Function name Description and Example code
main The function "main" initializes the interface. The functions the rows below will

be called

function main
%this function creates a GUI

%check if the GUI already exists:
if ~isempty(mainWinHandle)
 %the GUI already exists, no further action is needed
 return
end
%rhe GUI does not yet exist, create the GUI
HWIN=create_fig;
%register closerequestfunction and deletefunction:
set(HWIN,'closereq',@closereq,...
 'deletef',@deletef);

%create undoredo object for user preferences:
opt=undoredo(initopt,...
 'displayfunction',@displaysettings,...
 'mode','simple',... % no undo for userpref settings
 'storeh',HWIN,... % store with current figure
 'storef','userprefs'); % store in application data
"userprefs"
%register dependency tree for user preferences
setdepend(HWIN, opt, settings2win);
%maker user preferences available to future callbacks
store(guiopt);

%initialize or recover workspace data
[data,COMMITTED]=emptyDb;
%create undoredo object for workspace data
db=undoredo(data,...
 'backupfile',autoSaveFile,... % apply periodic backups
 'displayfunction',@displaydata,...
 'storehandle',HWIN,... % store with current figure
 'storefield','userdata',... % store in "userdata"
 'mode','memory'); % allow undo, do not cache
undo history
%for very large workspaces consider:
% 'cachefile','cacheFile',...
% 'mode','cached');

%change COMMITTED status if required:
db=setcommitted(db,COMMITTED);

7

Modelit Application Framework for Matlab

%register dependency tree for workspace data:
setdepend(HWIN, db, data2win);

%Draw interface for the first time. Add the 'all' argument to
flush to
%force that all user interface elements will be drawn:
db=flush(db,'all');
%make workspace data available to future callbacks:
store(guiopt);
%end of inialization of interface

mainWinHandle This function returns the handle of the application startup figure

function HWIN=mainWinHandle
HWIN=findobj('tag','MAINWINTAG');
set(HWIN,'closereq',@closereq);

create_fig This is a user specified function that creates the main window of the
application and all the handle graphic objects in it.

function HWIN=create_fig
initOptFile This function returns the name of the file that stores the user preferences.

Choose a unique file for each type of figure.

function str=initOptFile
str='userpref.stt';

autoSaveFile This function returns the constant with the name of autosave file.

function str=autoSaveFile
str='autoSave.tmp';

get_db This function retrieves the database.

function db=get_db
db=get(mainWinHandle,'userd');

get_opt This function retrieves the user preferences.

function opt=get_opt;
opt=getappdata(mainWinHandle,'userprefs');

check_exit This function is called when there might be any present data that need saving
before exiting the application or loading new data from file.

function status=check_exit
% OUTPUT
% status
% 0: no unsaved data
% 1: unsaved data. these have been saved.
% 2: unsaved data. these have not been saved.
% -1: unsaved data. user pressed cancel
db=get_db;
if(iscommitted(db))
 %All data are already saved
 status=1;
 return
end

%Unsaved data exist
switch questdlg('Save data?',...
 'Close workspace','Yes','No','Cancel','Yes')
 case 'Yes'
 if saveWorkspace;
 status=1;

8

Modelit Application Framework for Matlab

 else
 status=-1;
 end
 case 'No'
 status=2;
 case 'Cancel'
 status=-1;
end

saveWorkspace This is a typical callback for the uimenu item with label "Save as".

function ok=saveWorkspace(obj,event)
saved=false;
db=get_db;
fname=askFileName %function not provided in template
if isempty(fname)
 return
end
data=getdata(db);
save(fname,'data');
db=setcommitted(d);
store(db);
saved=true;

loadWorkspace This is a typical callback for the uimenu item with label "Load".

function loadWorkspace(obj,event)
%check if present data require save
if check_exit==-1
 %user cancels
 return;
end
%ask filename
fname=askFileName %function not provided in template

if isempty(fname)
 %user cancels
 return
end

%load data from file
s=load(fname);
%replace data content of undoredo object
db=get_db;
db=setdata(db,s.data);
%display data. Note that all items need to be redisplayed
store(flush(db,'all'));

closereq This is the closerequest function of the application startup figure. It will be
called when the user attemps to close the figure. If there are any unsaved
data, ask the user what to do. If the user cancels, the figure will not be
closed.

function closereq(obj,event)
if check_exit==-1
 %user has cancelled
 return
end
delete(mainWinHandle);

deletef This is the deletefunction of the application startup figure. It will be called
when the the figure is closed. In this function the following tasks will be
performed:

9

Modelit Application Framework for Matlab

• The user preferences for this figure will be retrieved and stored, so that
when the figure is opened again these can be imported again;

• Any cache files and autobackup associated with the workspace data will
be removed.

function deletef(obj,event)
%exit function of application main screen

%save user preferences
%enclose in try catch just in case
try
 guiopt=get_opt;
 opt=getdata(guiopt);
 %remove any items that do not need saving
 %(function not provided in template)
 opt=removeItems(opt)
 save(initOptFile,'opt');
catch
 %continue
end

%Close all figures
delete(findobj('type','figure'));

%remove autosave and cache files, if present
try
 db=get_db;
 cleanupdisk(db);
catch
 %db was corrupt
end

initOpt This function initializes the data structure that represents the user
preferences. This is done in 3 steps:
• Create a structure that contains the factory defaults. This is to make sure

that no errors will occur if the figure is openened for the first time.
Generally the user preferences are initialized with a number of fields
already present. Otherwise the "isfield" check will be needed everytime a
field is used or modified;

• Load the user preference s as saved when the figure was closed last time
(see function template "deletef"), and overwrite the factory defaults with
the values that are loaded from file;

• Set any values that are specific for the current session. For example, you
may store object handles in the user-preference structure.

function initOpt
%assign factoryDefaults (function not provided in template)
opt=factoryDefaults;
%apply saved user preferences
opt=ur_getopt(opt,initOptFile);
%ovverid options where applicable
opt.currentFile='untitled.mat';

initDb Like initOpt this function provides an inital value for an undoredo object, in
this case the database. Generally the workspace is initialized with a number
of fields already present. Otherwise the "isfield" check will be needed
everytime a field is used or modified. Unlike the user preferences the
workspace data from the previous session should generally not be reloaded.
The exception is if the application has not been terminated in a normal
manner, for example by a power failure or a user pressing Ctrl+Alt+Delete. In

10

Modelit Application Framework for Matlab

this case the autosave file will still be present and should be loaded.

function [data,COMMITTED]=initDb
%initialize empty workspace
%
% OUTPUT
% data: data for workspace
% COMMITTED: if false: data have been recovered and have
not yet been
% saved
if exist(autoSaveFile,'file')
 %recover data after crash
 disp(sprintf('Recover workspace from %s',autoSaveFile));
 s=load(autoSaveFile);
 data=s.data;
 COMMITTED=false; %these data have not yet been saved
 return
end
%call user specified function emptyDb for initialization
db=emptyDb;
COMMITTED=true;

emptyDb function data=emptyDb
%this function must be specified by user
%and is not part of template

settings2win This function returns a dependency tree for the user preferences. A
dependency tree is a structure that resembles the database of an application.
At each node of this structure a field "updobj" may be added. This field should
contain a cell array with the name or names of the update actions that are
required when an assignment is made that affects this node or any of its
children.

function upd=settings2win
%This function is specific for each application
%Example
upd.currentFile.updobj={'displayfilename'};

data2win Return the dependency tree for the database.
Example:

function upd=data2win
%This function is specific for each application
%Example
upd.data.updobj={'graph'};
upd.data.x.updobj={'domain'};
upd.data.y.updobj={'reach'};

displaysettings This function will be called when the flush method is invoked on the undoredo
object that holds the user preferences. The update structure is evaluated
using the evaldepend function. Subsequentlty a view function will be called
that is shared with the display function of the database.

function displaysettings(signature,opt,ind)
HWIN=gcf;
upd = evaldepend(HWIN, ind, signature)
db=get_db;
view(getdata(db),opt,upd);

displaydata This function will be called when the flush method is invoked on the undoredo
object that holds the database. The update structure is evaluated using the
evaldepend function. Subsequentlty a view function will be called that is
shared with the display function of the user preferences.

11

Modelit Application Framework for Matlab

function displaydata(signature,db,ind)
HWIN=gcf;
upd = evaldepend(HWIN, ind, signature)
opt=get_opt;
view(db,getdata(opt),upd);

view This is the function that actually displays the interface, given the database
and the user preferences. It will be called from either displaysettings or
displaydata (see above).

function view(db,opt,upd)
%This function is specific for each application

3.3 Example application: the game of GO

Games make good example applications because readers know the rules of the game and hence what type of
functionality the example implements. In the current case we use the board game Go
(http://en.wikipedia.org/wiki/Go_(board_game)) as an example.

The source code playgo.m is included in the source code distribution and creates the interface using the
Application Framework. The playgo example resembles the "simple" template more than the "Advanced
template".

As an exercise one may add extra features to the playgo example by using parts of the "Advanced template".

Figure 2: The function "playgo" creates GUI that allows users to play the well known GO game on a computer.

12

Modelit Application Framework for Matlab

4 Specifying dependency trees

4.1 Introduction

The complexity of a GUI may be characterized by the number of fields that make up the data model and the
number or elements that are displayed in the GUI. When a field in the datamodel changes GUI elements that
depend on it must be updated. We call this an interaction. The potential number of interactions increase with the
product of the number of fields and the number of elements, therefore twice the amount of objects and elements
mean four times the amount of interactions.

Of course one does not need to code each interaction separately. Instead one may repaint the entire interface if
any of the data fields change. However, this approach comes at the cost of high response times and sluggish
interfaces. The Application Framework offers a mechanism to work around this: dependency trees.

When a GUI is implemented using the Application Framework it will contain a displayfunction that is responsible
for displaying any element of the GUI. The general structure of a displayfunction looks like:

function ok=displayfunction(signature,data,ind)
upd=evaldepend(gcf,ind,signature)
if upd.element1
 %<paint element 1>
end
if upd.element2
 %<paint element 2>
end
%etc

In the code above the update structure "upd" is returned by the function evaldepend. The update structure
contains a number of boolean fields. These fields are used as flags that indicate whether or not a specific part of
the displayfunction is bypassed or not. The function evaldepend computes the update structure based on a
dependency tree that is stored by the function setdepend. This is done when the application initializes a figure.

Together the function setdepend and evaldepend provide functionality that is useful for creating complex interfaces
that still respond quickly. In this chapter we describe the background of dependency trees.

Note:
If you are creating lightweight interfaces only, you do not need setdepend and evaldepend , and you
may skip the remainder of this chapter.

4.2 Dependency matrix

Ideally, the display function should only update those elements that depend on the modified data and leave other
interface elements unaffected. To accomplish this we need to complete two tasks:
• Define a number of GUI elements. You may opt for a refined method, for example by identifying each line in

a graph as a separate element, or apply a more aggregate approach, for example by identifying a complete
graph as an element;

• Define the dependencies between the fields in the datamodel and the GUI elements. Again you may choose
a very detailed approach, for example that field "db.a.b.c" impacts element 1 and "db.a.b.d" impacts
element 2, or a more aggregate approach, for example that field "db.a" impacts element 1 and element 2.

Generally it is a good idea to start with an aggregate approach that will be refined as part of the profiling
process.

13

Modelit Application Framework for Matlab

The matrix below shows a typical dependency matrix. The vertical axis shows the fields that make up the
datamodel. Essentially this is a list of fields, but these may be organized in groups, and the groups are part of
either workspace data or user preference data. Although not indicated in the matrix, groups may again be
organized in a hierarchical manner. In practice data will be organized in structures.

Basically the dependencies are defined at the level of GUI elements and fields, where each GUI element
depends on one or more fields. This is indicated with blue-shaded cells in the matrix below. This matrix is called
a dependency matrix.

Table 1: Dependencies specified at field level

Category Field GUI elements

workspace
data

fld1
+----fld11
+----fld12
fld2
+----fld21
+----fld22

user
preferences

fld3
+----fld31
+----fld32
fld4
+----fld41
+----fld42

dependency defined at field level

4.3 Specifying the dependency matrix: dependency tree

In this section we will show how the information needed for creating the dependency matrix is specified. A
condition for this is that the datamodel of our application is represented by a Matlab structure. Consider the
structure displayed in Figure 3. Note that only the lowest level nodes (the leaves) hold data. The other nodes do
not store data directly.

Figure 3: Workspace data organized in a structure.

A dependency tree is created by adding a cell array with the name "updobj" as a field to nodes of the datamodel.
Specifying these fields is optional. Omitting them is equivalent to adding an empty cell array.

14

Modelit Application Framework for Matlab

updobj{}

updobj{} updobj{} updobj{} updobj{}

updobj{}

updobj{}

updobj{}

updobj{} updobj{}updobj{}updobj{}

Figure 4: Specifying a dependency tree

The cell array "updobj" contains the names of the GUI elements that need updating when any structure field that
is a direct or indirect child of the current node is modified. These names will then
reappear in the update structure that is evaluated by evaldepend.

Note that the updobj" array can be specified at any level and not only the lowest level. Specifying "updobj" at a
specific node is equivalent to specification at all its child nodes. This speeds up the specification process .

data fields affected

Specify
"updobj" at

this level

Figure 5: Instead of specifying the cell array "updobj" at the lowest level, on may save time by specifying it at a higher
level.

4.4 Evaluating the update tree

When a field in the datamodel changes the update structure can be computed by evaldepend. The function
evaldepend is called from the displayfunction using the arguments: figure handle, signature and subsasgn
structure(s). The latter are stored in a cell array.

The figure handle is used to retrieve all dependency trees that are registered with the figure. This makes it
possible to initialized the update structure with all required fields having the value "false". In this way we may use
statements like

if upd.element1

15

Modelit Application Framework for Matlab

 %<paint element 1>
end

instead of:

if isfield(upd,'element1') && upd.element1
 %<paint element 1>
end

The signature tells the evaldepend function which dependency tree is corresponds to the subsagn argument that
is considered

The subsasgn argument is a cell array that corresponds with the assignments that have been done to the
undoredo object since the last update. It tells evaldepend which node of the datamodel has been modified. Type
"help subsasgn" for Matlab help on this topic.

If we consider Figure 6, modifying a node implies that all child nodes are changed. Hence the update actions
specified in the "updobj" cell arrays with the child nodes should be executed. Also the update actions specified at
the parent nodes will be executed. The reason for this is that specifying an update object at a parent node
implies that this action is applicable to all its child nodes.

updobj{}

updobj{}

updobj{}

updobj{}

updobj{}

updobj{}

updobj{}

Modify field at
this level

updobj{}

updobj{} updobj{}updobj{}updobj{}

Figure 6: When an assignment is made to a node in the datamodel, the "updobj" cell arrays associated with all parent-
and child nodes are concatenated to obtain the list of GUI elements that should be repainted.

4.5 Overview

Figure 7 Illustrates once more how the evaldepend function can be used to evaluate the update structure.

In short the idea of the update structure is that with each node a set of dependent GUI-elements can be
specified. When the content of the GUI-data is modified at the level of a specific node these GUI-elements will
be updated.

GUI-data is said to be modified at the level of a specific node if either:
• Direct attributes of the nodes are changed, added, or removed. Direct attributes are the fields of the node;
• Child attributes of the nodes are changed, added, or removed. Child attributes are the fields of children or

children’s children of the node;

16

Modelit Application Framework for Matlab

• A parent or parent’s parent of the node is deleted or replaced

Figure 8 shows the diagram that is applicable when no conditional updating is required. In this case the entire
interface is repainted every time a change is made in the data model. Comparing Figure 7 and Figure 8 show
how the "simple" approach can be extended to the "optimized" approach. Because the optimization process is
carried out by appending rather than replacing the current source code, this approach can be part of a software
development process where early prototypes already display much of the functionality and look-and-feel of the
end product.

signaturefigure
handle

subsasgn
struct

retreive all
dependency

trees

init all update
elements ==>

flds_0{}

select
dep.tree for
signature

upd.(flds_1{i})
:= true

store
datamodel

dependency
tree

"workspace"
setdepend

dependency
tree

"user prefs"

Figure
+application

data

setdepend

displayfunction

undoredo
"workspace"

undoredo
"user prefs"

assign field
in

datamodel

Body of
displayfunction

upd.(flds_0{i})
:= false

upd.(flds_1{i})
:= true

upd

evaluate upd
elements ==>

flds_1{}

evaldepend

flush

Figure 7: Illustration of the interplay between setdepend, displayfunction and evaldepend

17

Modelit Application Framework for Matlab

store
datamodel

displayfunction

undoredo
"workspace"

undoredo
"user prefs"

assign field
in

datamodel

Body of
displayfunction

flush

Figure 8: When no conditional updating is required the code structure simplifies to the diagram above

18

Modelit Application Framework for Matlab

5 Reference manual

5.1 Introduction

This reference manual consists of two parts:
• Methods of the undoredo object. Where possible, the functionality of the Application Framework is offered

through methods of the undoredo object (see section 5.2);
• Auxiliary functions. In order to invoke a method of an undoredo object, an undoredo object must be available

as a variable. This is not always the case. Therefore at least a few separate functions need to be available
(see section 5.3).

5.2 Methods of the undoredo object

5.2.1 cleanupdisk

SUMMARY Depending on the properties specified upon creation of the undoredo object,
different files may be associated with this object, such as cache files and backup
files. cleanupdisk removes these files and should be called when the undoredo object
is no longer needed.

CALL cleanupdisk(db)
INPUT db:

undoredo object.
OUTPUT This function returns no output arguments.
EXAMPLE %Insert somewhere in main body:

set(gcf,'deletef',@deleteFcn);

function deleteFcn(HWIN,event)
% deleteFcn - application delete function
% retrieve undoredo object:
db = get_db; %(get_db must be provided)
% remove all files associated with this undoredo object:
cleanupdisk(db);
%Destroy figure:
delete(HWIN);

5.2.2 closegroup

SUMMARY In the undo/redo menu, all transactions in a group are presented in one line. The
closegroup command is used to separate different groups of transactions. Normally
the closegroup command is not needed as the store method closes a group of
transactions before storing the undoredo object. closegroup is needed:
• In the specific case where you are performing a series of operations that should

appear separately in the undo list, but there is no reason to store the database
in between these operations;

• When the store method is not used for committing transactions in an undoredo
object.

CALL db=closegroup(db)
INPUT db:

undoredo object.

19

Modelit Application Framework for Matlab

OUTPUT db:
undoredo object after update.

SEE ALSO store, setlabel

5.2.3 deletequeue

SUMMARY Empty the display queue without calling display function. The undoredo object keeps
track of the items that should be updated by the displayfunction by storing substruct
arguments passed on to the subsasgn method in a cell array. When the flush method
is called this queue is passed on to the display function and the queue is made
empty. If you are working on an application that uses two undoredo objects
that can be modified independently, for example one for data and one for
user preferences, situations might occur where:

• Both undoredo objects have a nonempty queue;
• Calling flush for one of the undoredo objects makes calling the flush method

for the other object no longer needed.
In this case you can invoke deletequeue to tell the other object that it can empty its
queue. If you omit this, no real harm will be done, but the next time flush is called for
this object. Some object will be repainted, causing an undesired user experience.

CALL db=deletequeue(db)
INPUT db:

undoredo object.
OUTPUT db:

undoredo object after update.
EXAMPLE %load workspace from file "fname"

%store current filename in user preferences undoredo object
opt=get_opt;
opt.filename=fname;
%no need for update: next lines will update screen
store(deletequeue(opt));

%retrieve and store database:
db=get_db
db.data=load(fname);
store(flush(db));

SEE ALSO flush

5.2.4 display

SUMMARY The undoredo object is designed so that the analogies with a "normal" Matlab
variable are maximized. When the function display is invoked on an undoredo object,
disp(db.data) will be called. Also a line with "undoredo object" is displayed to
notify the user of the class of the object.

CALL display(db)
INPUT db:

undoredo object.
OUTPUT This function returns no output arguments.
SEE ALSO fieldnames, subsasgn, subsref, isfield, isempty

20

Modelit Application Framework for Matlab

5.2.5 fieldnames

SUMMARY The undoredo object is designed so that the analogies with a "normal" Matlab
variable are maximized. When the function fieldnames is invoked on an undoredo
object, fieldnames(db.data) will be called.

CALL flds=fieldnames(db)
INPUT db:

undoredo object.
OUTPUT flds:

Cellstring with the fields of the undoredo object.

5.2.6 flush

SUMMARY Perform all paint actions that are required for the transactions since last flush.
Invoking the flush method on an undoredo objects causes the displayfunction to be
called.

This function will be called as follows:

abort=displayfunction(signature,data,queued)

with input:
 signature:

Unique number for each undoredo object. The value of the signature is
needed by certain auxiliary functions.

 data:
Data contents of the object.

 queued:
Cell array containing substructs.

and output:
 abort:

This is an optional output argument for the display function. If the display
function sets abort to TRUE, a subsequent call to store will have no effect.
This implements a mechanism for error checking. You may verify certain
conditions in the displayfunction and return abort=TRUE if required
conditions are not met.

CALL db=flush(db)
db=flush(db,'all')
db=flush(db,extra)

INPUT db:
undoredo object

extra:
Extra item to be passed on in cell-array 'queued'
Typical use:

db=flush(db,'all'): update all elements

Note that the displayfunction that is used should be able to deal with this
extra argument.

OUTPUT db:
undoredo object after update.

EXAMPLE Typical use:

21

Modelit Application Framework for Matlab

db=get_db; %retrieve database
db.field=value; %update database
db=flush(db); %update display
store(db); %store database

SPECIAL
CASES

EXAMPLE 1: Paint all screen elements with changes in underlying data:
flush(d)

EXAMPLE 2: Paint all screen elements:
flush(db,'all')

EXAMPLE 3: Mimic change of specific field without actually changing data:
flush(guiopt,substruct('.',field));

EXAMPLE 4: complex argument checking:

The next code fragment shows how complex argument checking can be
implemented. If a user enters a number of arguments that are mutually inconsistent.
The user should be warned and the previous GUI state must be restored.

function someCallback
db=get_db;
db=processUserInput;
db=flush(db)
if isempty(db)
 %repaint interface based on previous data
 warndlg(<somewarning>);
 db=get_db;
 db=flush(db,'all'); %you might want to refine here
end
store(db)

5.2.7 getdata

SUMMARY In most cases data is retrieved from an object by subscripting, for example:
db=undoredo(1:8)
a=db(3)
 a=3

However there is no subscript that retrieves the complete datastructure. For this
purpose the use the getdata method:

db=undoredo(data1)
data2=getdata(db)
 data2 is an exact copy of data1.

CALL data=getdata(db)
INPUT db:

undoredo object
OUTPUT Data content of undoredo object.
EXAMPLE If OBJ is an undoredo object, the following example shows how to clear the

undoredo history of an object:
OBJ=undoredo(data(OBJ));

NOTE There is a subtle difference between data=getdata(db)and data=db(:). The (:)
operator always returns a Mx1 vector with M=numel(db). If db contains data with
size m x n, getdata is needed to retrieve data content and data size.

22

Modelit Application Framework for Matlab

5.2.8 getsignature

SUMMARY Signature is an internal field of the undoredo object, and hence not visible from
outside. The present function returns the value of the signature. Getsignature is a
specialized function. You may need it if you want to recreate an undoredo object with
a specific signature that matches the reference made to a previous undoredo object,
for example when you load new workspace data. However in most cases it will be
easier to use the setdata command.

CALL signature = getsignature(db)
INPUT db:

undoredo object.
OUTPUT signature of the undoredo object (double).
SEE ALSO setdata

5.2.9 iscommitted

SUMMARY When an undoredo object is created or its contents are reassigned using setdata,
the status "committed" is set to TRUE. Each command that changes the data
content also sets the status "committed" to FALSE. The status "committed" is used
in the application program to decide if the user should be asked to save data when
the application is closed. This is typically implemented in the closerequest function.
When the user saves intermediate results the application should include a
statement that sets the committed status to TRUE.

CALL committed=iscommitted(db)
INPUT db:

undoredo object.
OUTPUT committed:

Commit status (TRUE or FALSE)
Committed=TRUE
 All transactions have been committed (saved to disk or stored otherwise)
Committed=FALSE
 One or more transactions have not been committed.

EXAMPLE (code example save data)

ud = getdata(db);
save(fname,'ud');
db=setcommitted(db);
store(db);

(code example close request function)

function closereq(hFig,event)
db = get_db;
if isempty(db)||iscommitted(db)
 delete(hFig);
 return
end

%Ask and store unsaved data
switch questdlg('Save data?,'Close
application','Yes','No','Cancel','Yes')
 case 'Yes'
 savedata(db);
 delete(hFig);

23

Modelit Application Framework for Matlab

 case 'No'
 delete(hFig);
 return
 case 'Cancel'
 return;
end

SEE ALSO Setcommitted, subsasgn, setvalue

5.2.10 isempty

SUMMARY An overloaded function for undoredo objects. It calls isempty on the data component
of the undoredo object.

CALL rc=isempty(db)
INPUT db:

undoredo object.
OUTPUT rc:

Boolean return code.

5.2.11 isemptyqueue

SUMMARY The undoredo object stores a queue that contains all substruct parameters that were
passed on to the subsasgn method (see below) since the last call to flush. This
queue will be passed on to the display function as its third argument, and allows
this function to decide which screen elements to update. A call to the flush method
will empty the queue. isemptyqueue is a specialized utility that tells whether or not
the queue is empty.

CALL rc=isemptyqueue(db)
INPUT db:

undoredo object.
OUTPUT rc:

Boolean return code.

5.2.12 isfield

SUMMARY An overloaded function for undoredo objects. This method calls isfield on the data
component of the undoredo object.

CALL rc=isfield(db,fld)
INPUT db:

undoredo object.
OUTPUT rc:

Boolean return code.

5.2.13 isopen

SUMMARY A specialized utility that normally should not be needed. It allows one to check if
modifications have been made, but not yet stored, since the last invocation of the
store method. For further explanation and backgrounds we refer to the summary of
the label method.

CALL rc=isopen(db)
INPUT db:

undoredo object.

24

Modelit Application Framework for Matlab

OUTPUT rc:
Boolean return code
rc=1: The group is open. This means that since the last call to store at least
one modification was made. The next modification will be added to the
present group.
rc=0: The group is closed. No modifications have been made since the last
call to store. The next modification will initialize a new group.

5.2.14 label

SUMMARY Attach a label to a group of modifications
applied to an undoredo object. This label will
appear in the list presented in the undo and
redo menu, see the figure on the right. Apart
from displaying a string in the undo/redo dialog
the label has no function. Specifying the label is
optional. The label is attached to a group of
modifications.

What is a group?
A group is initialized with a modification. Each
next modification will be added to the present
group. A group is closed by invoking the store
method. Undo and redo commands will always
on all elements of a group simultaneously. It is
not possible to undo one element of a group
and leave the other elements unaffected.

CALL db=label(db,labelstr)
INPUT db:

undoredo object.
labelstr:

Label to attach to a group of operations.
OUTPUT db:

undoredo object after update.
SEE ALSO undomenu, isopen

5.2.15 logbookentry

SUMMARY Applications that involve inspecting or manipulating data often have a need for a
logbook that stores information about the data-handling process and has room for
user comments. For this purpose the Application Framework contains the logbook.
You can add information to the logbook of your application by using the logbookentry
command. The method logbookgui can be used to start the logbook GUI as shown in
Figure 9.

CALL db = logbookentry(db,content,type,undolabel,comment)

25

Modelit Application Framework for Matlab

INPUT db:
undoredo object (to be updated).

content:
Value for content property (CELL or CHAR array).

type
Optional argument (defaults to empty), value for type property.

undolabel:
Optional argument (defaults to empty), label for undo menu. Include this if
logbookentry defines the only element of an update group.

comment:
Optional argument (defaults to empty), value for comment property.

OUTPUT db:
undoredo object after update
The field "transaction" is uninitialized or appended with
the following data structure:
transaction
+----date (double)
+----content (char array)
+----type (char array)
+----comment (char)

EXAMPLE data.value=1:10;
db=undoredo(data);
data.value(5)=50;
db=logbookentry(db,'element 5 has been updated','updated');
disp(getdata(db));

SEE ALSO transact_gui, logbookgui

Figure 9: Logbook GUI. This logbook contains one report and one manual edit.

26

Modelit Application Framework for Matlab

5.2.16 redo

SUMMARY The redo command rolls back the last modification to an undoredo object. When
done, the flush method is invoked.

CALL db=redo(db,N)
INPUT db:

undoredo object.
N:

Number of actions to redo (defaults to 1).
OUTPUT db:

undoredo object after update.
SEE ALSO undo

5.2.17 setcommitted

SUMMARY This function works together with iscommitted. See manual page of iscommitted for
summary and examples.

CALL db=setcommitted(db)
db=setcommitted(db,committed)

INPUT db:
undoredo object

committed:
TRUE or FALSE. (Defaults to TRUE). The committed property of the
undoredo object will be overwritten with this value.

OUTPUT db:
undoredo object after update.

EXAMPLE See iscommitted for an example.
SEE ALSO iscommitted

5.2.18 setdata

SUMMARY The subsasgn method provides no way to replace the datacontent of an undoredo
object with a new Matlab variable. This method does the job. The extra argument
may be used to indicate whether or not the undo history should be cleared.

CALL db=setdata(db,data)
db=setdata(db,data,reset)

INPUT db:
undoredo object.

data:
New data for undoredo object.

reset:
(Optional, defaults to TRUE), if TRUE reset the undo history of the object.

OUTPUT db:
undoredo object after update.

EXAMPLE This function is particularly useful when the database is replaced when a new
workspace is loaded from file.

db=get_db;
if ~iscommitted
 -provide code that prompts user to save data-
end
db=setdata(load(fname),true);
%remember to paint all objects

27

Modelit Application Framework for Matlab

store(flush(db,'all'));
SEE ALSO getdata, subsasgn

5.2.19 setdepend

SUMMARY A dependency tree is used by evaldepend to derive the so-called update structure
using the substruct arguments used in one or more assignments to an undoredo
object. A dependency tree is specified in a user defined function that returns a
structure that resembles the database of an application. At each node of this
structure a field "updobj" may be added. This field should contain a cell array with
the name or names of the update actions that are required when an assignment is
made that effects this node or any of its children. See the example for an
illustration.

CALL setdepend(db,HWIN,deptree)
INPUT HWIN:

Figure handle.
db:

undoredo object.
deptree:

Dependency tree.
OUTPUT This function returns no output arguments, but registers the dependency tree in the

application data of the figure.
EXAMPLE function example

%initialize
data.a=1;
data.b.c=2;
%create application figure
HWIN=figure;
%define database
db=undoredo(data,'disp',@view,'storeh',HWIN,'storef','userdata');

deptree.a.updobj={'update_a'};
deptree.b.updobj={'update_b'};
deptree.b.c.updobj={'update_c'};
deptree.b.d.updobj={'update_d'};
setdepend(HWIN,db,deptree); %register dependency tree
%end of initialize

%do some assignments and view what happens, make sure the function
%"view" (see below) is available
db.b.c=1;
db=flush(db);
% ==>upd =
% update_a: 0
% update_b: 1
% update_c: 1
% update_d: 0
db.b=1;
db=flush(db);
% ==>upd =
% update_a: 0
% update_b: 1
% update_c: 1
% update_d: 1
db.a=1;
db=flush(db);
% ==>upd =

28

Modelit Application Framework for Matlab

% update_a: 1
% update_b: 0
% update_c: 0
% update_d: 0

function view(signature,S,ind)
upd=evaldepend(gcf,ind,signature)

SEE ALSO evaldepend

5.2.20 setlabel

SUMMARY Attach a label to a group of modifications
applied to an undoredo object. This label will
appear if the list presented in the undo and
redo menu, see the figure on the right. Apart
from displaying a string in the undo/redo dialog
the label has no function. Specifying the label is
optional. The label is attached to a group of
modifications.

What is a group?
A group is initialized with a modification. Each
next modification will be added to the present
group. A group is closed by invoking the store
method. Undo and redo commands will always
work on all elements of a group simultaneously.
It is not possible to undo one element of a
group and leave the other elements unaffected.

What happens if no call is made to setlabel?
Calling setlabel is optional. If no call is made to
setlabel, the label will remain empty.

What happens if multiple calls are made to
setlabel?
When setlabel is called more than once
between initializing and closing a transaction
the last call will override the earlier one.

CALL db=label(db,labelstr)
INPUT db:

undoredo object.
labelstr:

Label to attach to a group of operations.
OUTPUT db:

undoredo object after update.
SEE ALSO undomenu, isopen, closegroup

5.2.21 store

SUMMARY When an undoredo object is created the properties "storehandle" and "storefield"
may be specified. This allows an undoredo object to store itself. The store operator is
similar to the commit action known in databases. Before an undoredo object is
stored the group of transactions is closed, so that the next change will initialize a

29

Modelit Application Framework for Matlab

new group.
CALL store(db)
INPUT db:

undoredo object.
OUTPUT This function returns no output arguments, but updates the userdata or

applicationdata of the handle specified in the undoredo object.
EXAMPLE Usually store is called in combination with flush:

store(flush(db))
SEE ALSO closegroup, flush

5.2.22 subsasgn

SUMMARY An overloaded function for undoredo objects. It calls subsagn on the data component
of the undoredo object.

CALL (examples)
db.a=value
db.a(2)=value
db.b=[]

INPUT db:
undoredo object.

value:
Matlab variable.

OUTPUT db:
Updated undoredo object.

5.2.23 subsref

SUMMARY An overloaded function for undoredo objects. It calls subsref on the data component
of the undoredo object.

CALL (examples)
value=db.a
value=db.a(2)

INPUT db:
undoredo object.

OUTPUT value:
Matlab variable.

5.2.24 undo

SUMMARY The undo command rolls back the last modification to an undoredo object. When
done, the flush method is invoked.

CALL db=undo(db,N)
INPUT db:

undoredo object.
N:

Number of actions to undo (defaults to 1).
OUTPUT db:

undoredo object after update.
SEE ALSO redo

30

Modelit Application Framework for Matlab

5.2.25 undoredo

SUMMARY Constructor of the undoredo object. This function transforms a Matlab variable into
an undoredo object.

CALL db=undoredo(data,<property1>,<value1>,<property2>,<value2>,...)
INPUT The first input parameter is the Matlab variable that is encapsulated in the undoredo

object. All other parameters are passed as property-value pairs.

Properties are not case sensitive and need not be fully named, as long as the
property is uniquely identified.
property
[class]

default
value

usage

displayfunction
[function]

empty This function will be called every time the method
flush is invoked on the undoredo object.

The function call looks like
abort=displayfunction(...
 signature, data, queued)

with input:
 signature:

Unique number for each undoredo object. The
value of signature is needed by certain
auxiliary functions.

 data:
Data contents of the undoredo object.

 queued:
Cell array containing substructs.

and output:
 abort:

This is an optional output argument for the
display function. If the display function sets
abort to TRUE, a subsequent call to store will
have no effect. This implements a
mechanism for error checking. You may
verify certain conditions in the displayfunction
and return abort=TRUE if required conditions
are not met.

signature
[double]

now() Approximate time of object creation. Used as a
reference to the undoredo object (without requiring to
pass on the full object and its data). Signature is
passed on to the objects displayfunction.

Normally, this property is not specified and the
undoredo constructor assigns this field.

see also: setdata
mode
[char]

'simple'
{'memory'}
'cached'

The mode parameter determines how the "undo" and
"redo" functionality will be implemented.

“simple”:
Use this option is no undo is required.

“memory”:

31

Modelit Application Framework for Matlab

Undo info stored in memory. Use this option if
no massive datasets are needed.

“cached”:
Undo info cached to disk if needed. This
option is only needed for very large datasets.

cachefile
[char]

'urcache' (applies only if mode==”cached”)
The cachefile names will start with this parameter.
Administrative info will be appended. To prevent a
mix-up between cache files and other files it is
recommended to avoid names that might be in use
by other applications. There is no real need to
specify the cachefile parameter, unless you run
multiple cached applications from the same
directory.

maxbytes
[integer]

64.000.000 Maximum number of bytes stored in memory before
saving to disk.

storehandle
[double]

required
parameter

Handle of GUI object with which undoredo object is
saved.

storefield
[char]

required
parameter

Setting storefield==”userdata” causes undoredo data
to be saved using:
set(storehandle,'userdata',obj)
setting storefield~=”userdata” causes undoredo data
to be saved using:
setappdata(storehandle,storefield,obj)

backupfile
[char]

'' Use filename as base for the autobackup file. If this
parameter is not specified or left empty, no automatic
backups will be created. The backup file will be
updated periodically (see parameter
"backupinterval"). When using automatic backup,
you must delete the backup files when the
application closes.

backupinterval
[double]

10/1440 This parameter is passed as a datenum value (1
equals one day). Every time a modification to an
undoredo object is made, the internal parameter
"timeoflastbackup" is checked and updated.

OUTPUT db undoredo object.

5.3 Auxiliary functions

5.3.1 dispupd

SUMMARY For debugging purposes it may be useful to include a line with dispupd(upd) in
the display function. When the display function is called a list of items that will be
updated is printed on the console to facilitate troubleshooting. In a deployed
environment no debug information will be printed.

CALL dispupd(upd)
INPUT upd:

The update structure, as returned from evaldepend.
OUTPUT This function returns no output arguments but displays information in the command

window.
EXAMPLE function view(signature,data,ind)

upd=evaldepend(gcf,ind,signature);

32

Modelit Application Framework for Matlab

dispupd(upd);

SEE ALSO evaldepend

5.3.2 evaldepend

SUMMARY This function evaluates the update structure for the combination of:
• One or more undoredo objects registered with setdepend;
• A figure.

Prior to calling this function the dependency tree must be specified using the
setdepend command.

Why does this function rely on a signature instead of on an undoredo object?
The dependency tree is defined and registered separately for each combination of
undoredo object and figure. Hence, one undoredo object may be registered with more
than one figure, each time with a different dependency tree. This is because
different figures contain different updatable elements. When the undoredo object is
registered with a figure, not the full object is stored as a reference, but only its
signature. The undoredo signature uniquely defines each undoredo object. Using the
full object as a reference would imply undesired redundancy.

CALL upd = evaldepend(HWIN, ind, signature)
INPUT HWIN:

Figure handle.
ind:

Subscripts applied to modify object data.
signature:

Signature of modified undoredo object.
OUTPUT upd:

A structure that contains the screen elements that should or should not be
updated:
upd.property=0 do not update screen element.
upd.property=1 update screen element.

EXAMPLE The code below provides a template for usage of dependency trees

%Include in the main body of the application:
db=undoredo(initdb,'disp',@dispdata);
setdepend(HWIN, db, data2applic);
opt=undoredo(initopt,'disp',@dispsettings);
setdepend(HWIN, opt, settings2applic);

function s=initdb
 -user defined function-
function s=initopt
 -user defined function-
function db=get_db
 -user defined function-
function opt=get_opt;
 -user defined function-

%the next function is called when application data change:
function dispdata(signature,db,ind)
upd = evaldepend(HWIN, ind, signature)
opt=get_opt;
view(db,opt,upd);

33

Modelit Application Framework for Matlab

%the next function is called when user preferences change:
function dispsettings(signature,opt,ind)
upd = evaldepend(HWIN, ind, signature)
db=get_db;
view(db,opt,upd);

function view(db,opt,upd)
-user defined function-
if upd.element1
 -user defined action-
end
if upd.element2
 -user defined action-
end

SEE ALSO evaldepend

5.3.3 getpostponed

SUMMARY The methods getpostponed and setpostponed are useful in situations where the
display depends both on workspace data and user-preferences. A typical situation
that might occur is that the visibility of a specific panel, say a panel that displays a
complex graph, is controlled by a parameter that is part of the user preferences and
the content of this complex graph depends on a dataset that is part of the
workspace data. Suppose that this dataset changes. This implies that the graph
must be updated. If the panel that holds the graph is visible, everything is
straightforward: the graph will be updated and the display and the database will be
consistent again. Now, suppose the user has disabled the graph. We might still
update the axes so that once the user enables the graph; it will be up to date
immediately. However, this is a waste of resources: the user might never enable the
graph. Another option is to force painting the graph each time the panel is made
visible. This is also a waste of resources in some cases: hiding and showing the
frame will now take a long time: the graph will be updated every time the visibility
state of the panel is toggled, even if the graph was already up to date.
Setpostponed and getpostponed provide a workaround for these cases. When a graph
needs to be updated but the panel that displays it is hidden, one may call
setpostponed instead of actually drawing the graph. The next time the
displayfunction is called; use getpostponed to detect any postponed drawing actions
if the visibility of the panel has changed otherwise setpostponed will be called again.

CALL upd=getpostponed(upd,HWIN,NAME)
INPUT upd:

Update structure (see also evaldepend).
HWIN:

Handle of window for which the update is being postponed;
NAME:

Storage name (defaults to "ppupdate");
OUTPUT upd:

Update structure, expanded with postponed actions.
EXAMPLE function display(signature,data,ind)

%retrieve user preferences:
opt=get_opt;
%check which elements need an update based on last modification:
upd=evaldepend(gcf,ind,signature);
%check which element may need updated based on
%earlier modifications:
upd=getpostponed(upd,gcf);

34

Modelit Application Framework for Matlab

%reset list of postponed update elements
postponed={};
if upd.showcomplexdata
 if opt.panelisvisible
 <paint complex graph>
 else
 %action "showcomplexdata" cannot be completed now
 postponed{end+1}='showcomplexdata';
 end
end
%Register list of postponed update elements
setpostponed(postponed,gcf);

SEE ALSO setpostponed

5.3.4 isregistered

SUMMARY Returns TRUE if undoredo object is registered on figure.
CALL b = isregistered(obj, fig)
INPUT props:

Cell array containing list of postponed actions.
HWIN:

Handle of window for which the update is being postponed.
NAME:

Storage name (defaults to "ppupdate").
OUTPUT This function returns no output arguments, but changes the application data

"ppupdate" of the figure with handle HWIN.
SEE ALSO evaldepend

5.3.5 setpostponed

SUMMARY See getpostponed.
CALL setpostponed(props,HWIN,NAME)
INPUT props:

Cell array containing list of postponed actions.
HWIN:

Handle of window for which the update is being postponed.
NAME:

Storage name (defaults to "ppupdate").
OUTPUT This function returns no output arguments.
EXAMPLE See getpostponed.
SEE ALSO getpostponed

5.3.6 logbookgui

SUMMARY The auxiliary function logbookgui starts the logbook GUI as shown in Figure 9.
Usually this function is defined as a callback of a toolbar button.

CALL logbookgui(obj,event,fp_getdata,C)
INPUT obj,event:

Only for internal use. These arguments are passed by Matlab when an
object callback is specified as {@logbookgui,fp_getdata,C}

35

Modelit Application Framework for Matlab

fp_getdata:
Function pointer to function that returns undoredo object. This can be a
three-line function like:

function db=getdata
HWIN=findobj('tag','MAINWIN');
db=get(WIN,'userdata');

C:
Structure with GUI constants (colors, fontsize, etc.). If not specified, default
settings are used.

OUTPUT This function returns no output arguments but creates a GUI.
SEE ALSO logbookentry
EXAMPLE The following code adds a button to the toolbar that opens the logbook:

uipushtool('tooltip','Inspect or edit logfile',...
'clicked',{@logbookgui,@get_db,C});

36

Modelit Application Framework for Matlab

5.3.7 undomenu

37

Modelit Application Framework for Matlab

SUMMARY Execute undo, redo of undo-menu.
CALL undomenu(obj,event,operation,fp_getdata,HWIN)

NOTE: This is not a method of undoredo objects, but a general accessible function.
INPUT obj,event:

Standard Matlab callback arguments. These arguments are not used in the
present function.

operation:
Type of operation required.

operation==1 undo.
operation==2 redo.
operation==3 multiple undo/redo. A popuplist appears that
allows users to choose to which state the application should
reverse.
operation==4 reset undo/redo history.

fp_getdata:
Function pointer to user-specified function that returns database structure.
This can be a three-line function like:

function ud=getdata
global MAINWIN %handle of application's main window
ud=get(MAINWIN,'userdata');

HWIN:
Input argument for fp_getdata (usually a figure handle).

OUTPUT This function returns no output arguments.

38

Modelit Application Framework for Matlab

SEE ALSO undo, redo

5.3.8 ur_getopt

SUMMARY User preferences are settings that apply to the appearance of a specific application.
When an application is closed and opened later, users typically expect that the
application reappears with identical settings. To accomplish this, the user
preferences should be saved when the application closes and loaded again when
the application is started. Saving the data can best be done in the application’s
main figure's deletefunction. Loading the data typically is done in a function that by
convention has the name "initOpt" (but any other name is allowed). This function
initializes the data structure that represents the user preferences. This is done in
three steps:
• Create a structure that contains the factory defaults. This is to make sure that

no errors will occur if the application is started for the first time;
• Load the user preferences as saved when the application was closed last time

(see function template "deletef"), and overwrite the factory defaults with the
values that are loaded from file. This is done by the function ur_getopt;

• Set any values that are specific for the current session. For example, you may
store object handles in the user-preference structure.

CALL opt=ur_getopt(defopt,OPTFILE,varname)
INPUT defopt:

Default options (current function overwrites these).
OPTFILE:

Binary file in which options have been saved earlier.
varname:

Variable name in which options are stored (defaults to "opt”).
OUTPUT opt:

Options structure in which data from defopt and OPTFILE are combined
EXAMPLE function initOpt

%assign factoryDefaults (function not provided in template)
opt=factoryDefaults;
%apply saved user preferences
opt=ur_getopt(opt,initOptFile);
%override options where applicable
opt.currentFile='untitled.mat';

39

Modelit Application Framework for Matlab

6 Advanced topics

6.1 Design decisions

The state of an application is made up by a multitude of variables; data on file en handle graphic objects. A user
changes the state by issuing commands.

When a new application is implemented a number of design decisions must be made with regard to how the
state will be stored:
• Use the Application Framework or not? Very simple applications may not need the framework. However if it

is likely that the current -simple- application will be extended in the future, it might be a good idea to use the
framework anyway;

• Implement a single undoredo object that holds workspace data and user preferences or two separate
undoredo objects. Adding an extra undoredo object for the user prefernces requires extra work but provides
a better user experience ;

• Which data need to be stored where? The state of an interface can be stored in many ways, for example:
• In one or more undoredo objects;
• By reference to data that is stored in a file or in a database;
• In global Matlab variables;
• As userdata or applicationdata of handle graphic objects;
• As other properties of handle graphic objects, such as 'String" or 'Checked' and 'Value'.

In particular the poperties of graphic applications need attention if you are designing a GUI that allows "undo"
and "redo" commands. In many applications these properties make up an important part of the storage. For
example if a user enters a filename in an edit box, there is no need to store this variable in a redundant variable.

When applying the Application Framework, this is typically what happens. The reason for this is that the field
should also display correctlty after undo, redo or initialization.

You may not want to extend this to all properties. For example if you application contains a list, you may not
want to store the selected items in this list redundantlty becaus ther is no point is keeping track of the lists
selections in an undoredo object.
When the user clicks in the list, you still need to call the displayfunction, for example to display the selected
listietems in some manner. This needs to be done without making a change to the object. A typical trick you may
apply is to extend the dependency tree of the user preferences with a dummy field an make modification to this
field.

For example:

%include this line in dependency tree
upd.dummy.updobj = {'plotmarker'}

%include these lines in list callback:
opt=get_opt;
opt.dummy=[];
%paint interface,catch output to suppress warning
unusedout=flush(opt);

40

	1Introduction
	1.1Objective of the Modelit Application Framework for Matlab
	1.2Introducing the application framework
	1.3On-line help
	1.4System requirements
	1.5How to proceed from here

	2Installation
	3Templates for applications based on the framework
	3.1Simple template
	3.2Advanced template
	3.3Example application: the game of GO

	4Specifying dependency trees
	4.1Introduction
	4.2Dependency matrix
	4.3Specifying the dependency matrix: dependency tree
	4.4Evaluating the update tree
	4.5Overview

	5Reference manual
	5.1Introduction
	5.2Methods of the undoredo object
	5.2.1cleanupdisk
	5.2.2closegroup
	5.2.3deletequeue
	5.2.4display
	5.2.5fieldnames
	5.2.6flush
	5.2.7getdata
	5.2.8getsignature
	5.2.9iscommitted
	5.2.10 isempty
	5.2.11isemptyqueue
	5.2.12isfield
	5.2.13 isopen
	5.2.14 label
	5.2.15 logbookentry
	5.2.16redo
	5.2.17setcommitted
	5.2.18setdata
	5.2.19setdepend
	5.2.20setlabel
	5.2.21store
	5.2.22subsasgn
	5.2.23 subsref
	5.2.24undo
	5.2.25undoredo

	5.3Auxiliary functions
	5.3.1dispupd
	5.3.2evaldepend
	5.3.3getpostponed
	5.3.4isregistered
	5.3.5setpostponed
	5.3.6logbookgui
	5.3.7undomenu
	5.3.8ur_getopt

	6Advanced topics
	6.1Design decisions

