

Modelit
Elisabethdreef 5

4101 KN Culemborg

info@modelit.nl
www.modelit.nl

Deploying Matlab

applications with

Docker

Date: March 3, 2022

file:///H:/d/wm/wordsettings/2013/templates/www.modelit.nl

 ii

 iii

Content
1 Introduction .. 1

1.1 About this document .. 1

1.2 In short .. 1

1.3 Background .. 1

1.4 Docker containers .. 2

1.5 Contents of this guide .. 2

2 Method 1: Use the documented Matlab method 3

2.1 Basic procedure ... 3

2.2 Limitations .. 3

3 Method 2: use Docker command line .. 4

3.1 Install Docker.. 4

3.2 Graphical overview .. 4

3.3 Step by step approach ... 5

4 Example: remote evaluation .. 8

4.1 Introduction .. 8

4.2 Test back-end program in the Matlab IDE (developer PC) 8
4.2.1 Standalone test in Matlab IDE 9
4.2.2 Web service test in Matlab IDE 9

4.3 Verify application in a Linux environment, in the Matlab IDE ... 10

4.4 Compile the application (Linux) ... 11

4.5 Verify the application (Linux) .. 11

4.6 Package the application in a Docker image............................ 12

4.7 Run the Docker image .. 13

5 Multi container Docker images ... 15

5.1 Introduction .. 15

5.2 Example application ... 16
5.2.1 Organization of the application 16
5.2.2 Front-end .. 17

5.3 Steps for creating a multi-container application 18
5.3.1 yml script and build command 20

6 Appendix: createDockerfile, example use 21

6.1 Usage of createDockerfile ... 21

6.2 Source code .. 21

6.3 Example input ... 21

6.4 Example output ... 21

7 Useful links.. 23

Deploying Matlab applications with Docker

 1

1 Introduction

1.1 About this document

This document is aimed at Matlab developers who need to deploy

algorithms written in Matlab code in a typical cloud or computer center
setting, with or without a webservice interface.

1.2 In short

To enable robust deployment of Matlab programs as microservices in the
cloud or computer centers Modelit has created a toolbox that integrates a

webserver into Matlab applications and has documented a procedure to
package these programs in so called Docker images. This document

describes this procedure. A separate document describes the webserver
toolbox.

1.3 Background

Between initial idea and final deployment of any data driven method lies
a path of analysis, experimenting, implementation and testing. At each

stage of development, different requirements apply to development tools
and programming environment(s) that are used. The table below outlines

the typical requirements that apply during the research phase versus the
deployment phase.

Research phase Deployment phase
 Rely on specialized researchers Should not require specialized

knowledge
 Develop the optimal algorithm Guarantee security and

availability

 Improvise and explore options Use standardized deployment
procedure

 Work with an interactive
environment, adhoc scripts, and

visual/graphic feedback

 Must run unattended, preferably
as a webservice

 Processes must integrate in an
environment that is scalable and
robust

 Run on a personal computer

 Deploy in the cloud, computer
center or Linux platform

 One license per developer is
acceptable

 Royalty free distribution is
preferred

These differences often result in the decision to re-program all functionality
after the proof-of-concept phase of a project is complete. This leads to

duplication of work, additional costs and time required for implementation,
and the risk of introducing errors. And maybe more important this makes it
very hard to realize improvements by means of iterations.

Out of the box, Matlab is a great tool to develop and test algorithms.

However, this only takes care of the requirements in the left column. In
order to take care of the right column, further requirements apply:

Deploying Matlab applications with Docker

 2

 The application must be able to communicate with the outside world

through http;
 The application must be packaged in such a way that it can run in the

cloud or computer center.

1.4 Docker containers

“A Docker container image is a lightweight, standalone, executable package
of software that includes everything needed to run an application: code,
runtime, system tools, system libraries and settings” (quoted from [1])

A Docker container image of a Matlab application typically contains the

compiled Matlab code, an installation of the Matlab Component Runtime
(MCR) library, and any data files needed to run the application. A container
image can be run on a Docker engine, which in turn runs on the host

operating system.

Unlike with a Virtual Machine, the Docker engine does not emulate the
entire operating system. “Multiple containers can run on the same machine
and share the OS kernel with other containers, each running as isolated

processes in user space” (quoted from [1]). Because of this, a program
running with Docker requires much less resources than the same program

running on a Virtual Machine.

The popularity of Docker has sparked many useful third-party

developments, like ready-for-use images that implement building blocks like
a database or a load balancer.

Productivity and short development cycle times are often a reason for
selecting Matlab as a development tool. In many cases Matlab developers

value an iterative development process. Docker complements this by
greatly simplifying the DevOps cycle, allowing for inclusion of deployment in

consecutive iterations. This is a great advantage if time to market is key.

1.5 Contents of this guide

This guide describes how to deploy a Matlab application as a Docker image.
The guide describes two methods.

Method 1 uses the Matlab-documented procedure

“Package MATLAB Standalone Applications into Docker Images” as a point
of departure. This procedure is available for Matlab versions 2020b and later
and is restricted to Linux.

Method 2 entirely relies on the tools provided by Docker and can be used

with any Matlab version. Also, it should be applicable to Windows too, and it
allows more control over the final Docker image.

Deploying Matlab applications with Docker

 3

2 Method 1: Use the documented Matlab method

2.1 Basic procedure

As a point of departure, we use the procedure “Package MATLAB Standalone

Applications into Docker Images” described in the Matlab documentation. To
access this documentation from within the Matlab IDE type:

>> doc docker

And then look for the hyperlink as shown below.

The information can also be found online. Its last known location is:
https://nl.mathworks.com/help/compiler/package-matlab-standalone-

applications-into-docker-images.html

The information contains all that is required to build and deploy your Docker
image based on a compiled Matlab application.

2.2 Limitations

The basic procedure is a good starting point, but has a few limitations:

 the procedure is not available for Matlab versions prior to version 2020b;

 the procedure only works with Linux;
 the procedure does not support multi-container applications;
 the procedure uses a dedicated syntax that allows the user to control a

subset of the properties that can be controlled with the equivalent
“docker build” command (see method 2), and does not benefit from the

public documentation that is available for “docker build” (see
https://docs.docker.com/engine/reference/commandline/build).

Chapter 3 describes a method that will probably result in a more shallow
learning curve initially, but is sometimes required to address all

requirements of the project.

https://nl.mathworks.com/help/compiler/package-matlab-standalone-applications-into-docker-images.html
https://nl.mathworks.com/help/compiler/package-matlab-standalone-applications-into-docker-images.html
https://docs.docker.com/engine/reference/commandline/build

Deploying Matlab applications with Docker

 4

3 Method 2: use Docker command line

This chapter describes how to create and deploy a Docker image that
encapsulates a compiled Matlab application without using the Docker-

specific commands packaged with Matlab version 2020b and beyond.

Follow these steps for packaging compiled Matlab applications preceding

version 2020b, to deploy on Windows, or when additional control over the
final product is required.

The steps below assume the Linux/Ubuntu platform. But deployment with
Windows is possible in an analogous way.

3.1 Install Docker

The Docker engine is the program that runs Docker images. For install

instructions, see:

https://docs.docker.com/engine/install/

or (for the Windows case)

https://hub.docker.com/editions/community/docker-ce-desktop-windows

3.2 Graphical overview

The image below outlines the deployment process. In this image rectangles

represent product stages and rounded rectangles represent actions.

https://docs.docker.com/engine/install/
https://hub.docker.com/editions/community/docker-ce-desktop-windows

Deploying Matlab applications with Docker

 5

m files

compile

compiled app

build docker
image

base image
with MCR

jar files &
auxiliary files

Dockerfile

Docker
image

deploy docker
image

Container

Figure 1: Outline of deployment of a Matlab application in a Docker

container

3.3 Step by step approach

The objective is to create a Docker image and deploy it on a private server
or with a cloud hosting service. Once Docker and Matlab are properly

installed on the Linux computer, this should be a simple task that can be
completed in a few minutes, provided one exactly knows which steps are
required.

For a person without Docker experience however, the challenge is to

execute the process without introducing errors or skipping a step. Despite
all the benefits attributed to the Docker development tools, for novices, this
process can be hard to setup and debug.

This manual aims to present a script with a number of verifiable

progressions that will help the typical Matlab user execute the process. After
becoming familiar with the process, the intermediate verifications can be
skipped to save time.

The table below outlines the steps. Analogous to these steps chapter 4

presents a practical example. This chapter will also discuss the various steps
in more detail.

Deploying Matlab applications with Docker

 6

Verification step Notes

Verify the application in

the primary
development
environment

As a point of departure, we assume m-files of

the application run well in the development
environment, usually this is the Matlab
integrated development environment (IDE) on

a personal computer.

Move sources and data

to Linux environment.

Move m-files and required auxiliary files to the

computer that is used to create the Docker
image.

Extracting all required files from the code base
in the development machine can be a struggle.

The Matlab utilities “depfun” (2013b and
before) and “requiredFilesAndProducts” (2014a

and beyond) automatize this task but in
general will select a (much) wider set of m-files
than required.

An alternative is usage of Matlab drive.

If the primary development environment relies
on a customized static java class path, the path

must be setup on the Linux machine through a
dedicated javaclasspath.txt file in Linux startup

folder (see Matlab documentation).

Verify the application in

the Linux environment,
in the Matlab IDE
(optional)

Because (auxiliary) files have been moved

verification of the application is recommended.

If the OS of the primary development is non-

Linux, any mex files that are used must be
recompiled for the Linux platform.

Other migration issues to check for might be
calls to the OS like “dos” and the usage of

hard-coded file separators “\”.

Compile the application Because the target OS is Linux, the application

must be compiled on a Linux machine. The
typical compile command is:

mcc('-m', '-d', targetdir, 'target.m');

where “target.m” is the entrypoint of the
application and “targetdir” is a subfolder of the

current directory.

Verify the compiled

application on Linux
(optional)

Do not forget to setup a proper

javaclasspath.txt file.

Package the application
in a Docker image

Move the compiled application and all auxiliary
files to a separate folder, or re-use the earlier
folder “targetdir”. Important! Note that within

the docker image this folder is referred to as ‘/’

Deploying Matlab applications with Docker

 7

(root). Any file references must take this into

account.

Create a Dockerfile. A Dockerfile is a text

document that contains all the commands a
user could call on the command line to

assemble a Docker image.

Again, update the javaclasspath.txt file to

reflect the location of the custom jar files
(relative to the root of the image!).

Build the docker image. A typical build
command is:

sudo docker build -t <myProject> .

(do not forget the dot)
with <myProject> a projectname of choice

Verify the Docker image If the built is successful a container can be
started with the command:

sudo docker run -it <myProject>

or:
sudo docker run -it -p ePort:iPort <myProject>

(tcp) port ePort will be forwarded to iPort inside
the container.

Deploy the Docker
image

The container image contains all data,
executables and libraries required to run the

application. It can be deployed on any
computer with Docker installed. As long as the
application does not use any kernel specific

features, this even applies for computers with a
different OS.

Deploying Matlab applications with Docker

 8

4 Example: remote evaluation

4.1 Introduction

As an example, we use the remote evaluation tool, as included in the

embedded webserver toolbox. The example creates a webservice that
executes function calls from a Matlab client. The client-side syntax for these

calls is near-identical to the “feval” syntax.

There might be different reasons for doing this, for example:

 offload computational tasks to a more powerful CPU;
 make requests to a server that takes care of real time data acquisition;

 perform calculations based on privileged data;
 establish a centralized storage for a multi platform application

The embedded webserver toolbox allows asynchronous function calls. And if
required, multiple instances of the remote evaluation utility can run

simultenously. Combined with asynchronous function calls this allows
parallel execution of CPU intensive tasks.

One could also install the server on a central computer and share it with a
group of users. In this setup each user is provided with a high peak

performance at moderate additional costs.

4.2 Test back-end program in the Matlab IDE (developer PC)

Before we compile and package our server-side function, it is a good idea to
test in the Matlab IDE. The function that will be ran on the server is
“simpleMailbox” as seen below. This function allows posting and retrieving

messages.

function messages = simpleMailbox(username,message)

% CALL:

% simpleMailbox(username) retrieve messages for use "username"

% simpleMailbox(username,message) send message to user "username"

%

% INPUT:

% username:

% identity of sender or reciever

% message:

% data to be sent

%

% OUTPUT:

% messages:

% cell array with all undelivered messages for "username"

%

persistent allMessages

assert(ischar(username),'First argument must be string identifying user')

messages={};

if nargin==2

 %send a message

 this.username = username; %must be char string

 this.message = {message}; %can be any type, use cell to avoid conflicts

 allMessages=cat(1,allMessages,this);

else

 %fetch all messages for username

 if isempty(allMessages)

 return %no messages at all

 end

 tf=ismember({allMessages.username},username);

Deploying Matlab applications with Docker

 9

 messages=[allMessages(tf).message]; %deliver mail for username

 allMessages=allMessages(~tf); %clear delivered messages

end

4.2.1 Standalone test in Matlab IDE

First, we check the function in standalone mode with the commands below:

 simpleMailbox('userA','A1');
 simpleMailbox('userA','A2');
 simpleMailbox('userB','B1');

 rC=simpleMailbox('userC')
 rA=simpleMailbox('userA')
 rB=simpleMailbox('userB')

The output should be:

 rC = []

 rA = 1×2 cell array {'A1'} {'A2'}

 rB = 1×1 cell array {'B1'}

4.2.2 Web service test in Matlab IDE

Next, we setup “simpleMailbox” for remote execution, but still in the Matlab

IDE. For this we need two Matlab sessions. In the first Matlab session we
execute:

 function startSimpleMailbox

 server = modelit.web.server.Server('0.0.0.0',4444);

 server.addEvaluation('allowedFunctions','simpleMailbox',...

 'username','usr1',...

 'password','pw1')

 start(server);

 The first command instantiates a “blank” webservice, that listens to port
4444;

 The method “addEvaluation” installs a specific callback function that will

process incoming requests. The name/value pairs used in this call are
optional and explained below

Name/Value pair
(optional)

Impact

'allowedFunctions',

'simpleMailbox'
Only the function “simpleMailbox” is
accepted for execution. “allowedFunctions”

can be a single string, or an array of strings
packaged in a cell or string array. If
“allowedFunctions” is not specified, any

function is accepted for execution.
'username','usr1' Restrict access. Refuse requests without

these credentials. If the argument
“username” is not specified, credentials will

not be required.

'password','pw1'

 The command “start(server)” activates the server.

Deploying Matlab applications with Docker

 10

Once the server is running, open a second Matlab session to test the server.

 h = modelit.web.client.HttpRequest('GET','http://localhost:4444')
 h = setCredentials(h,'usr1','pw1')

 feval(h,@simpleMailbox,'userA','A1');
 feval(h,@simpleMailbox,'userA','A2');
 feval(h,@simpleMailbox,'userB','B1');

 rC = feval(h,@simpleMailbox,'userC')
 rA = feval(h,@simpleMailbox,'userA')
 rB = feval(h,@simpleMailbox,'userB')

Verify that the output is consistent with the output observed in section
4.2.1.

4.3 Verify application in a Linux environment, in the Matlab IDE

 collect all sources in a .zip file;
 create a folder “simpleMailbox” on the deployment machine (Ubuntu);

 move the zip file to this folder and select “extract here”, a subfolder is
created;

 move to this subfolder (assuming this is where the “startup.m” is

located);
 open a terminal, start a Matlab session with the command “matlab”;

 create or update the file “javaclasspath.txt” to include references to
MatlabHTTPserver.jar and MatlabServer.jar;

 restart Matlab, verify the java classpath, by typing “javaclasspath” in the

Matlab console;
 start the server the command “startSimpleMailbox”;

 start a second Matlab session locally, and run the script
“testSimpleMailbox”. This script basically contains the commands shown
in section 4.2.2

 An optional additional test is to invoke the webservice from another
computer in the Local Area Network. This requires that port “4444” is

accessible for other computers on the network. The Linux command for
this is:
 sudo ufw allow 4444/tcp

Deploying Matlab applications with Docker

 11

4.4 Compile the application (Linux)

Start the Matlab IDE and move to the previous folder “simpleMailbox”

 target='startSimpleMailbox';

 targetdir= fullfile(pwd,['sh_',target]);

 mcc('-m', '-d', targetdir, target);

This creates the shell script “run_startSimpleMailbox.sh” and the runnable

“startSimpleMailbox” in subfolder “sh_startSimpleMailbox”.

4.5 Verify the application (Linux)

To run the example, two jar files belonging to the embedded webserver
toolbox must be copied to the folder “sh_startSimpleMailbox” and a

javaclasspath.txt file must be created that refers to these.

<before>

MatlabHTTPserver.jar

MatlabServer.jar

Note that the path to the .jar files has been omitted here. This simplification
is permitted if one places the .jar files in the startup folder of the project.

Then open a terminal in the folder “sh_startSimpleMailbox” and issue the

command:

./run_startSimpleMailbox.sh /usr/local/MATLAB/MATLAB_Runtime/v911

Note that the location of the Matlab runtime depends on the Matlab version.

v911 corresponds to R2021b.

Now complete the verification by running “testSimpleMailbox” in a separate

Matlab session. Your terminal should look like:

Deploying Matlab applications with Docker

 12

4.6 Package the application in a Docker image

The key to creating a Docker image is a so called Dockerfile
For the current project this file looks like:

FROM matlabruntime/r2021b/release/update0/c0000000000000000

LABEL Description="MATLAB R2021b startSimpleMailbox"
LABEL Vendor="Modelit"

LABEL Web="http://www.modelit.nl"
LABEL Version="R2021b"

COPY run_startSimpleMailbox.sh .
COPY startSimpleMailbox .

COPY javaclasspath.txt .
COPY MatlabServer.jar .

COPY MatlabHTTPserver.jar .

RUN chmod a+x ./startSimpleMailbox
RUN chmod a+x ./run_startSimpleMailbox.sh

CMD ["sh", "-c", "./run_startSimpleMailbox.sh /opt/matlabruntime/v911"]

Each line in Dockerfile is labeled with a capitalized initial word. The table
below explains briefly what the lines in the script above are for. See

docker.com for the full documentation of the Dockerfile format.

file:///D:/d/wm/Draaiboeken/docker.com

Deploying Matlab applications with Docker

 13

Label Purpose of line

FROM This line refers to the point of departure for the image. In this
case it refers to another Docker image that contains the Matlab

runtime library and is necessary to execute compiled Matlab
applications.

LABEL Store a label in the image for administrative purposes (optional)

COPY Copy file to relative location in image. “.” implies that the file is

copied to the root of the image.

RUN Execute this command inside the Docker image during the build
stage.

CMD Execute this command inside the Docker image during the run
stage.

Once the dockerfile is in place in the folder sh_startSimpleMailbox, the

command:

 sudo docker build -t mailbox .

creates the image. The option “-t mailbox” is optional, but tags the image

as “mailbox” which makes it easier to refer to it when running the image.
The command typically produces this output:

4.7 Run the Docker image

Now that the image has been built. It can be run with the command:

sudo docker run -it -p 4444:4444 mailbox

The command is created from the following parts:

sudo Excute with administrative privileges

docker run command for running a container

Deploying Matlab applications with Docker

 14

-it show the output in the current terminal
-p 4444:4444 forward port 4444 to the container (as 4444)

mailbox tag of image to use

The output should look like:

Deploying Matlab applications with Docker

 15

5 Multi container Docker images

5.1 Introduction

Until now we have been dealing with Docker images based on a single

compiled Matlab application. Applications often consist of multiple services
working together for functionality or scaling purposes.

For this type of applications, the deployment process is even more complex,
and operators should look for a deployment method that is efficient and

reproducible.

Like Docker is used to package and deploy single container applications (see
Figure 1 on page 5), docker-compose is used for managing multi-container
applications. Figure 2 illustrates the build process. The starting point for the

process is the docker images, like discussed in chapters 0 and 4.

container
image 1

container
image N

docker-
compose

"up"

yml
configuration

file

composed
container

Figure 2: multi-container application, created from multiple container

images, as specified in .yml file

With Docker compose, docker images created from Matlab programs can be

combined with “off the shelf” images that deliver valuable functionality, like
logging, database functionality or load balancing, just to mention a few.

Deploying Matlab applications with Docker

 16

5.2 Example application

As an example of a multi container application we use a web portal that can
be accessed at glas.modelit.nl. The front-end of the application is coded in
Angular. The back-end is coded in Matlab and runs in compiled mode in

containers on a Linux server.

5.2.1 Organization of the application

The web portal has a front-end that features a number of tabs. The front-
end communicates with a back-end that holds all data and does the

required computations. The main tab of the portal shows a map that is
constructed from multiple 256x256 tiles that depend on the selection

settings and are created on the fly. To speed up graphical feedback when
panning or zooming on the map multiple instances of the tile server that

create these tiles run in parallel. The front-end communicates with a load
balancer that distributes requests over these instances.
A single process is running that holds all required data in RAM. The tile

server process consults this data through http.

Front-end
(website)

tab 1

load balancer
image nginx

(tile) server
1

(tile) server
M

data server
holds data in

RAM

Front-end
(website)

tab N

file:///D:/d/wm/Draaiboeken/glas.modelit.nl

Deploying Matlab applications with Docker

 17

5.2.2 Front-end

Deploying Matlab applications with Docker

 18

5.3 Steps for creating a multi-container application

Summary

Some applications require multiple containers to run simultaneously. For
example, an application may rely on a compiled Matlab application, a

database and a load balancer, each running in a separate container. The
command “docker-compose” automates the process of building, starting
and stopping multi-container Docker applications.

Steps

Next steps are required to manage a multi-container application.
See also: https://docs.docker.com/compose/

Create a YAML file See also:
https://docs.docker.com/compose/compose-file/

“Docker Compose is a tool for defining and

running multi-container Docker applications. With
Docker Compose, you use a YAML file to configure
your application’s services. Then, with a single

command, you create and start all the services
from your configuration.”

In section 5.3.1 a sample YAML file is shown. This
example contains a tileserver (hotspotViewer,

accessible externally on port 8081), a data
service that is accessible from the tileserver

process (hotspotservice, accessible internally on
port 6061), and a load balancer (nginx, accessible
externally on port 6060)

https://docs.docker.com/compose/
https://docs.docker.com/compose/compose-file/

Deploying Matlab applications with Docker

 19

Create all Docker

image(s)

This command creates all docker images that are

required for the application, as specified in the
YAML file. Navigate to the folder with the YAML
file, open a terminal, then execute:

sudo docker-compose build

This command builds the Docker images specified

in the YAML file.

Run Docker
container(s)

This command starts all containers, using the
parameters specified in the YAML file. Execute:

sudo docker-compose up

or:
sudo docker-compose up --scale

hotspotviewer=4

The addition “--scale hotspotviewer=4” forces 4
instances of hotspotviewer to be started.

Stop all containers Execute:

sudo docker-compose stop

or: apply ctrl + C inside the terminal. This with
halt the application as well.

Deploying Matlab applications with Docker

 20

5.3.1 yml script and build command

Deploying Matlab applications with Docker

 21

6 Appendix: createDockerfile, example use

6.1 Usage of createDockerfile

The utility “createDockerfile.m” is included in the embedded webserver
toolbox. It is used to create a Dockerfile for a compiled Matlab application.

This appendix contains an example of how the utility is used and what
output it produces.

As an alternative to using the utility the Dockerfile can also be created
manually using “example output” as a template.

6.2 Source code

See createDockerfile.m as included with embedded webserver toolbox.

>> help createDockerfile

 Generate and write a Dockerfile

 CALL:

 createDockerfile(targetdir, target, files, varargin)

 INPUT:

 targetdir: <string>

 target: <string>

 the application to run.

 files: <cellstr>

 file to include in the image, such as modelit.jar etc.

 varargin: <any[]>

 input arguments for the target, should appear in the same

 order as the function signature of the target.

6.3 Example input

createDockerfile(targetdir, 'hotspotViewer',...
 {'javaclasspath.txt','log4j.properties',...
 'modelit.jar','MatlabHTTPserver.jar',...
 'MatlabHTTPclient.jar','xmltoolbox.jar'},...
 'port', '8081',...
 'host', '0.0.0.0');

6.4 Example output

The example input creates a file in the “Dockerfile” in the folder “targetdir”
with the following content:

FROM matlabruntime/r2021b/release/update0/c0000000000000000

ENV port=8081
ENV host=0.0.0.0

LABEL Maintainer="Maintainer@company.ext>"
LABEL Description="MATLAB R2021b hotspotViewer"
LABEL Vendor="Modelit"

LABEL Web="http://www.modelit.nl"

Deploying Matlab applications with Docker

 22

LABEL Version="R2021b"

COPY run_hotspotViewer.sh .
COPY hotspotViewer .

COPY javaclasspath.txt .
COPY log4j.properties .
COPY modelit.jar .

COPY MatlabHTTPserver.jar .
COPY MatlabHTTPclient.jar .

COPY xmltoolbox.jar .

RUN chmod a+x ./hotspotViewer

RUN chmod a+x ./run_hotspotViewer.sh

CMD ["sh", "-c", "./run_hotspotViewer.sh /opt/matlabruntime/v911
${port} ${host}"]

Deploying Matlab applications with Docker

 23

7 Useful links

[1] Docker explained https://www.docker.com/resources/what-
container

[2] Docker cheat sheet https://www.pdocker network ls
adok.fr/en/blog/do-you-have-all-it-takes-

to-use-docker

[3] Package MATLAB Stan
dalone Applications

into Docker Images

https://nl.mathworks.com/help/compiler/p
ackage-matlab-standalone-applications-

into-docker-images.html

[4] Docker-compose https://docs.docker.com/compose/

[5] Docker Desktop for
Windows

https://hub.docker.com/editions/communit
y/docker-ce-desktop-windows

https://www.docker.com/resources/what-container
https://www.docker.com/resources/what-container
https://nl.mathworks.com/help/compiler/package-matlab-standalone-applications-into-docker-images.html
https://nl.mathworks.com/help/compiler/package-matlab-standalone-applications-into-docker-images.html
https://nl.mathworks.com/help/compiler/package-matlab-standalone-applications-into-docker-images.html
https://docs.docker.com/compose/
https://hub.docker.com/editions/community/docker-ce-desktop-windows
https://hub.docker.com/editions/community/docker-ce-desktop-windows

