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Overview of Notation

indices
i entry
j exit
r origin
s destination
m number of entries
n number of exits
l number of link volume observations
h number of license plate reader locations
k link volume observation
a,b license plate reader locations
t departure period
p period
x(i,j) mapping of index i,j into vector, 

x(i,j)=(i-1)n+j

variables
(t) Vector (length m) of idealized entry volumes in period t

q(t) Vector (length m) of entry volume observations, in period t
(t) Vector (length l) of idealized link volumes in period t

y(t) Vector (length l) of link volume observations in period t
fij(t) Number of trips from entry i to exit j, departing in period t
f(t) EE flow vector (length mn). This vector contains the elements of the flow

matrix, fij(t), row by row,
fx(i,j)(t)=fij(t)

i=1,…m, j=1,…n
eab(t) trajectory count
e(t), θ(r,s) Vector of trajectory counts, location of element ers(t) in the vector e(t).

(t) Trajectory count contribution, the number of trips with departure period t
that contribute to both EE flow fij(t) and trajectory count ers(t).

g(t), φ(r,s,i,j) Vector of trajectory count contributions, location of (t) in this vector.
αk recognition rate at site k.

Trajectory count contribution probability; the probability that a trip in flow
fij(t) contributes to ers(t).

p Vector of trajectory count contribution probabilities.
yH(t) Combined observation vector, yH′(t)=[y′(t) e′(t)]′
b(t) Split vector (length mn). This vector contains the elements of the split-

probability matrix, bij(t), row by row, i.e.
bx(i,j)(t)=bij(t)

i=1,…m, j=1,…n

q̃

ỹ

grs
ij

grs
ij

prs
ij
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b(t) Estimated split vector (length mn)
x(t) Displacement of split vector relative to historical value
w(t) Drift variable (length mn)
u(t) Systematic component in variation of split proportions (length mn)
v(t) Observation error on link volume observations (length l)
yH(t) Combined observations in period t
YH(t) Set of combined observation up to and including period t

matrices
τ Assignment map τijk=1, if flow fij(t) contributes to observation yk(t), and

zero otherwise.
κ Path-license plate reader incidence map. κijr=1 if route i-j uses license plate

reader r and zero otherwise, r=1,2,…h
U Link-flow incidence matrix (height mn, width l).

Ux(i,j),k = τijk
i=1,…m, j=1,…n, k=1,…l

(t) Idealized measurement matrix, a matrix with the same dimensions as U, but
with the idealized entry volumes as its non-zero elements, i.e.:

x(i,j),k(t) = τijk i(t)
i=1,…m, j=1,…n, k=1,…l

H(t) A matrix equivalent to (t), but with the idealized entry-volumes replaced
with the observed volumes.

Qt Variance covariance matrix of the drift variable (size mn×mn)
Rt Variance covariance matrix of the observation error (size l×l)
Kt Kalman Gain matrix

operators
t(.) truncation operator
r(.) reflection operator

constants
0 a vector of zeros
1 a vector of ones
ei the ith unit vector
I the identity matrix
πm,n repeating column matrix of size mn×n, containing n columns of lengths m.

The nonzero elements of πm,n are defined with:
πm,n

x(i,j),i=1
i=1,2,…m, j=12,…n

H̃

H̃ q̃

H̃
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notational conventions
′ matrix transpose
0≤x≤1 the inequality applies to all elements of x
p(.) probability density
P(.) probability distribution
x∼P(.) x is a random variable with distribution P(.)
P(x|y)∼ the conditional distribution of x is equivalent to:
MVN[µ,Σ] multivariate normal distribution with mean µ, and variance covariance

matrix Σ
MVN[µ,Σ]|x the value of the distribution in point x

Poisson[λ] poisson distribution with parameter λ
TMVN[µ,Σ] truncated multivariate normal distribution with parameters µ, and Σ
RMVN[µ,Σ] reflected multivariate normal distribution with parameters µ, and Σ
MLNM[n,p1…pm]

multinomial distribution with parameters n and p1…pm

the arguments x1,x2…xn that maximize the function J
max J(.) the maximum of the function J

argmax

x1 x2…xn,
J x1 x2…xn,( )
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Equations (Flow E): 1
Figures (Flow F): 1
Lemmas (Flow L): 1
Tables (Flow T): 1

1. Introduction to the Problem
1.1 Background

The ascendancy of automotive technology has led to the development of a flourishing traf-
fic engineering discipline. Authorities turn to traffic engineers for advice on issues related to
planning and management of traffic. The analysis of traffic always plays an important role in
approaching these issues. Therefore much research is directed towards fundamental issues,
such as estimating the future number of travellers, their departure times and routes and deter-
mining their travel delays.

Variables that determine the state of a traffic system, change over time. However, tradi-
tional traffic analysis involves no time differentiation other than distinguishing between peak
and off-peak periods. In traffic engineering, the term static is used to denote a methodology in
which only time-aggregated variables and their mutual relations are considered, while the
term dynamic is used to denote a methodology in which the development of the variables in
time is of central importance.

The lack of practical applications of dynamic traffic analysis can be explained in part by a
lack of appropriate theoretical development. Traffic is a result of human behaviour. This
behaviour is only partly understood and this is a cause of large inherent uncertainty. Another
factor that discourages dynamic analysis is the lack of data. Reliable, detailed, time-differenti-
ated traffic data are needed to test hypotheses and to apply dynamic models in practice. In
general, traffic data that satisfy these demands are not available. Finally, the importance for
practical applications of this kind of analysis may not have been fully recognized.

In the last decade, various factors have contributed to placing dynamic traffic analysis high
on the agenda of transport research. These factors are connected with both operational and
planning aspects.

Operational tasks include the control of individual intersections, the coordinated control of
multiple intersections, information provision to travellers, route guidance, access control to
motorways, and the like. As for supporting operational tasks with dynamic traffic analysis, an
increasing awareness is growing that models that have the ability to forecast traffic conditions
can contribute to the efficiency, safety and reliability of traffic systems. Also the increasing
availability of facilities for automated data collection and the increasing cost of recurrent and
non-recurrent congestion have contributed to this.

The term Advanced Transport Telematics (ATT) is now used for applications in the area of
control of traffic and information provision to travellers. Research in the field of ATT is sup-
ported by large government programs such as the ‘Dedicated Road Infrastructure and Vehicle
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safety in Europe’ (DRIVE) programme of the European Commission, the Intelligent Transpor-
tation Systems (ITS) programme in the USA, and the Vehicle Information and Communication
System (VICS) program in Japan. These programmes function as umbrellas under which
transport research can be classified.

Although most research is directed towards operational issues, strategic issues such as the
planning of road infrastructure and travel demand management can also benefit from dynamic
traffic analysis. The introduction of the time dimension in traffic analysis can lead to better
answers to questions that a policy maker would be interested in, such as the impact of a pro-
posed change in infrastructure on location, time of occurrence and extent of recurrent conges-
tion. In particular, questions related to the environmental impact of traffic are difficult to
answer on the basis of aggregated data only, as models that estimate noise production, exhaust
emissions and smog need to be supplied with detailed characteristics of traffic flows. It is
expected that in the near future new legislation in the USA and Europe will lead to extra
requirements to the planning process of road traffic infrastructure, which will further stimulate
the use of dynamic traffic analysis.

Dynamic traffic analysis encompasses a wide area of interrelated traffic phenomena. These
phenomena may be traveller decisions such as trip frequency, destination choice, mode choice,
route choice and departure time choice, but also the interaction between supply (of infrastruc-
ture) and demand (for travel). Insight in the latter category of phenomena is needed to estimate
link capacities, speed density relationships, queuing, etc.

1.2 Objective of the Study

The objective of this study is the estimation of time varying travel demand on small road
networks such as motorway corridors. This is a specific subproblem within the framework of
dynamic traffic analysis. Estimates of travel demand are summarized in Entry-Exit (EE) matri-
ces containing a number of trips for every combination of entry and exit. Likewise, time vary-
ing travel demand is summarized in a dynamic EE-matrix. A dynamic EE-matrix is a series of
EE-matrices ordered with respect to trip departure time. For this purpose the time-axis is
divided into intervals of which a typical length would be ten minutes. The elements of a
dynamic EE-matrix are denoted by fij(t), where i represents the entry, j represents the exit and t
represents the departing period. For convenience of notation EE-matrices are rearranged in
EE-flow vectors, denoted by f(t).

EE-flows give rise to various categories of observations, such as traffic counts and survey
data. These observations can be used to estimate the EE-flows. This thesis concentrates on the
use of observations that can be collected in an automated manner. A typical example of such
observations are traffic counts, which in many instances are collected routinely by road author-
ities using induction loops. Another example is the observation of individual vehicle trajecto-
ries using an Automated Vehicle Identification (AVI) technique such as license plate
recognition based on image processing. The latter category of observations is referred to as
trajectory counts (an exact definition will be given in a later chapter).

Let the vector of traffic counts and trajectory counts that relate to f(t) be denoted by y(t) and
e(t) respectively, and define the combined observation yH(t) by:

yH(t)= (1.1)

As errors are involved in the observation process, yH(t) is not only a function of f(t), but also

y t( )

e t( )
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of a random vector ε(t) that accounts for observation errors:

yH(t)=yH( f(t),ε(t) ) (1.2)

Let YH(t) denote the set of all observations until and including period t, i.e.
YH(t)={yH(1), yH(2),… yH(t)}, then the problem considered in this thesis is estimating the vec-
tor f(t) on the basis of available observations, i.e. the definition of an estimator f( YH(t) ) for
f(t).

The first part of the thesis deals with the simplified case, where the observation vector con-
sists of traffic counts only. The extension to the case of combined observations is given in
chapter 7.

1.3 Assumptions and Limitations

This section constrains the problem area by making a number of assumptions about the
road network that is considered, the traffic flow characteristics on this network, and the avail-
ability and properties of the observations.

Network properties
Any network considered in this thesis is embedded in a surrounding network, and therefore

is referred to as a subnetwork. A typical example of such a subnetwork is a motorway corri-
dor. The union between the subnetwork and the surrounding network is referred to as the full
network. The events on the surrounding network are assumed to be beyond our observation.

An important characteristic of the problem is that the subnetwork Entry-Exit flows that are
to be estimated correspond with parts of Origin-Destination (OD) flows on the full network,
and therefore depend on travel decisions taken in view of traffic conditions on the full net-
work. Travel decisions may relate to departure time, destination, mode, route and the like.

For the subnetwork being considered, it is assumed that for each EE-pair only one connect-
ing path exists. The subnetwork may hence be represented by a directed tree (see figure 1.1).
This enables the definition of an assignment map τ, with:

τijk=1, if the path from entry i to exit j traverses link k
τijk=0, otherwise

i=1,2,…m, j=1,2,…n, k=1,2,…l (1.3)

Figure 1.1: Example network. For all entries and a subset of the other links, time series of 
observations are available. Observations of entry volumes are denoted by 
qi(t),i=1,2,…4, t=1,2,…, other traffic counts are denoted by yk(t),k=1,2,…4. Each EE-
pair is connected via one route.

t
q3

t

y1

t

q4
t

q2

t
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Moving time coordinate system
Throughout the thesis the presence of a moving time coordinate system (MTCS) will be

assumed. The idea behind a moving time coordinate system is that, if travel times can not be
neglected, boundaries between consecutive periods are not given by fixed points on the time
axis, but by time space trajectories, see figure 1.2. If these trajectories are chosen in an appro-
priate manner then the majority of vehicles complete their trip through the study area in one
time zone, i.e. in figure 1.2, their trajectories do not cross boundaries of periods. Vehicles not
satisfying these conditions give rise to assignment errors. The relative significance of assign-
ment errors can be made arbitrarily small by increasing the length of the sampling periods (at
the cost of the number of observations). Also specifying the travel delays more accurately
reduces the assignment error. However, the development of new theory or tools for the estima-
tion of travel times is not within the scope of the present thesis.

Formally, the construction of an MTCS may be thought of as follows:
 • Divide the time axis into intervals, for example by using a regular grid. Let τi denote the 

boundaries between interval i-1 and interval i, i=1,2,….
 • Choose an arbitrary location in the network, for example the most upstream node. Refer to 

this location as the reference location.
 • Define the moving time coordinate system by the mapping {IR+,P}→IN+

tMTCS(τ,p)=max{ i | τi+τdelay(τ,p)<τ,i∈IN+}

τ∈IR+, p∈P (1.4)

where τ denotes the instant on the continuous time axis, τdelay(τ,p) denotes the median of
the distribution of travel delays on the path from the reference location to point p encoun-
tered by motorists who depart at the reference location at instant τ-τdelay(τ,p), and P is the
set of points in the network for which one wishes to define the moving time coordinate sys-
tem.

Observations
The set of subnetwork links is divided into three disjunct categories: entry links, exit links,

and a third category referred to as internal links. It is assumed that all entry flows and a part of
the other link flows are observed. The traffic counts on the entry links are denoted by qi(t),
i=1,2,…m, t=1,2,…, while counts on internal and exit links are denoted by yk(t), k=1,2,…l.

A distinction is made between the idealized link flows and their corresponding traffic
counts. Idealized link flows are marked with the symbol ‘ ˜ ’ and are defined by sums of EE-
flows with a given departure period, i.e.:

i(t)≡ (1.5)

and:

k(t)≡ (1.6)

where i(t) are idealized entry flows and k(t) are idealized internal link flows or exit flows.

q̃ fij t( )
j 1=

n

∑

ỹ fi j t( ) τijk
j 1=

n

∑
i 1=

m

∑

q̃ ỹ
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In the absence of observation errors or assignment errors, idealized flows and observed flows
would be equal. The idealized link flows play an important role in specifying a motorway EE
travel demand model in chapter 2.

Assumption of slowly varying split probabilities
In general, the EE flows can not be solved from a single set of traffic counts. For example

in the light of equations (1.5) and (1.6), the flows on the links of the network shown in figure
1.1 correspond to 13 linear combinations of EE-flows. Due to the conservation of flows at the
5 internal nodes of the network, only 8 of these observations are linearly independent. On the
other hand the topology of the network allows for 13 nonzero EE-flows. Therefore an infinite
number of EE-matrices match the observations, and additional assumptions are needed to
obtain a problem with a unique solution. This set of assumptions will be referred to as the EE-
travel demand model. The combination of a model with a procedure to estimate its unknown
parameters will be referred to as an EE-estimation method.

After a short discussion of alternative modelling assumptions at the beginning of chapter 2,
this thesis concentrates on a class of EE-estimation methods based on the assumption of
slowly varying split probabilities. Methods in this class will be referred to as split ratio meth-
ods. An introduction to this class of methods is given by Cremer in Papageorgiou (1991), pp.
310-315. When split ratio methods were first introduced (Cremer and Keller, 1981) split pro-
portions, denoted by bij(t), and defined as the proportion of vehicles entering at entry i des-
tined for exit j, were central to these methods. The idea behind split ratio methods is illustrated
in figure 1.3. By assuming that the splits b11 and b21 remain constant during two periods, two

y1

y2

y3

y4

y5

y6

y7
t=2t=1 t=3 t=4

time

space

Figure 1.2: Moving time coordinate system. The time space trajectories divide the consecutive 
periods.

∆ ∆ ∆ ∆

NETWORK TRAJECTORIES
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independent linear equations can be set up from which b11 and b21 can be solved. Figure 1.3
also shows that a group of split proportions related to a common exit can be solved separately
from the other split proportions.

Elaborating on Van Der Zijpp and Hamerslag (1993), in this thesis we will be concerned
with split probabilities rather than split proportions. This distinction is only small, but occa-
sionally leads to new insight, such as a derivation of spatial correlations between traffic counts
in chapter 5.

Estimating future entry flows
After the split probabilities have been estimated, the estimate for the flow vector is obtained

by multiplying the observed entry flows with the estimated split probabilities, i.e.:

fij(t) = qi(t)bij(t-1) (1.7)

where bij(t-1) is the most up to date estimate of bij(t-1) at the end of period t-1. This implies
that the prediction horizon for each EE-pair equals the traveltime for the connecting route, as
the entry flows must be available before an estimate of a future flow can be made. If a longer
prediction horizon is needed, the entry flows need to be extrapolated, for example using histor-
ical patterns. This is likely to result in loss of accuracy. However, empirical data show that lit-
tle day to day variation exists in the entry flow patterns, see e.g. Van Der Zijpp (1993).  A
method to estimate future entry flows based on historical patterns and a scaling algorithm was
described in De Romph (1994). This issue will not be further addressed in this thesis.

1.4 Outline of the thesis

The problem that was described in the present chapter is in its heart an underspecified prob-
lem: one set of link flows may correspond to many different EE-matrices. Hence, it is not pos-
sible to uniquely identify an EE-matrix from observations that are derived from link flows, or
in the dynamic context, to uniquely identify a sequence of EE-matrices from time series of
such observations.

b12=.75

t=1100

200
175

125

b11=.25

100 b11 +200 b21 =125

120 b11 + 220 b21=140

Figure 1.3: Application of the split ratio principle: assuming the split proportions are constant 
during two periods, results in two independent linear equations with two unknowns; 
from these equations the split proportions can be solved.

1

2

1

2
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To eliminate the underspecification, a model referred to as the motorway model will be
specified in chapter 2. On a number of points, usage of this model refines a number of earlier
proposed dynamic approaches. For example in the motorway model, the split probabilities
supersede the split proportions as the unknown parameters. This implies that a part of the var-
iation in EE flows that was formerly subscribed to variation in the unknown parameters, is
now statistically described by a random selection process that is inherent to individual motor-
ists making uncoordinated travel decisions. To expand the practical applicability of dynamic
EE-estimation methods, the commonly used restrictions that the entry flows are exactly
known and traffic counts do not involve internal links are relaxed by explicitly taking errors in
entry volume observations into account and allowing for the use of internal link counts. Fur-
thermore, due to the moving time coordinate system that was introduced in the present chap-
ter, the motorway model is applicable to larger networks, as the assumption of small travel
times is relaxed into the assumption of small travel time dispersion.

Taking the motorway model as point of departure a second step in the research involves
deriving estimators for its parameters, deriving system properties following from the model,
and investigating how additional sources of information may be used to improve the esti-
mates.

Chapter 3 contains a literature review of dynamic EE-estimation methods. To enable the
use of the traditional methods as a reference for alternative ones, extensions of the existing
methods that can process internal link flows are described, leaving the original versions that
use only entry and exit flows as a special case. In chapter 4, a new estimation method is pro-
posed. This method will be based on Bayesian updating and is aimed at overcoming a number
of problems that were found with the traditional methods. The method will compute a proba-
bility distribution rather than a point estimate for the unknown split probabilities. The deriva-
tion of point estimates from this distribution will be referred to as postprocessing, and a
number of alternative routines for this purpose will be proposed.

System properties implied by or applicable to the motorway model are considered in chap-
ters 5 and 6. Chapter 5 exploits the relations described in the motorway model to derive spatial
correlations between traffic counts. Knowledge of these properties combined with usage of
proper statistical tools is expected to lead to better estimates of the split probabilities and bet-
ter founded judgements about the reliability of these estimates. Chapter 6 puts the assumption
of slowly varying split probabilities to the test through an analysis of tolltickets that were col-
lected by road authorities in France. This analysis also reveals that there is very little day to
day variation in the split proportions, implying that historic information is highly relevant for
the estimation of split probabilities. A way is proposed to utilize this historic information.

In the future new technologies will make it possible to trace individual vehicles in an auto-
mated manner either by installing Automated Vehicle Identification (AVI) equipment at multi-
ple locations or by letting vehicles transmit their trajectories. In chapter 7 it is investigated
how data arising from these technologies may be used in combination with induction loop
data. The aim is the development of a method that uses a mixture of historic data, traffic
counts, automated license plate surveys, and maybe data obtained from a group of vehicles
equipped as probe vehicles.

In the last part of the thesis, many of the theoretical findings have been tested in two series
of experiments. The first series of experiments involves synthetic EE-flows and traffic counts
that are generated according to the specifications of the motorway model (chapter 8). The sec-
ond series of experiments involves traffic counts on the Amsterdam beltway that were col-
lected during one month (chapter 9).
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A separate series of appendices deals with technical issues, like the details of the minimiza-
tion algorithms that are needed to implement the EE-estimation methods (appendix A), an
approximation of the mean and the variance of the special class of statistical distributions that
was introduced in chapter 4 (appendix B), notational conventions and mathematical prelimi-
naries needed for chapter 5 (appendix C). An overview of the notation used in the thesis is
found prior to the present chapter.



9

Equations (Flow E): 2
Figures (Flow F): 2
Lemmas (Flow L): 2
Tables (Flow T): 2

2. Modelling Motorway EE-Travel Demand
2.1 Introduction

As has been illustrated in chapter 1, the EE flows can not be solved from a single set of
traffic counts. Therefore additional assumptions are needed to obtain a problem with a unique
solution. This set of assumptions will be referred to as the EE-travel demand model. Such a
model may be based on various principles, such as closeness to a prior matrix, compliance
with a static model, maximization of the number of micro states or minimization of the total
travel time in a system, see e.g. van Zuylen and Willumsen (1980), Maher (1983), Cascetta
and Nguyen (1988), Hamerslag and Immers (1988), and Bell (1991b). A distinction is made
between models that describe momentary interrelations between EE-flows (static models) and
models that describe how EE-flows develop in time (dynamic models). This chapter discusses
models in both categories, with an emphasis on a dynamic model to which the assumption of
slowly varying split probabilities is central, referred to as the motorway model. In various
ways, usage of this model represents an elaboration of approaches known from literature, such
as proposed by Cremer and Keller (1981, 1984, 1987), Keller and Ploss (1987) and Nihan
and Davis (1987, 1989). Later chapters will discuss properties that follow from the motorway
model and estimators for its parameters.

2.2 Static models

EE-travel demand models that describe momentary interrelations between EE-flows may
help a transport planner in determining travel demand at an aggregate level, and may even
reflect relationships that remain valid over a long planning horizon. Nevertheless these mod-
els are considered to be of limited significance for the dynamic EE-estimation problem as they
require a certain level of aggregation to be sufficiently plausible.

Having said this it should be noted that due to lack of data, usage of static models often is
the only option. For example if only for a few locations in the network, time series of traffic
counts are available while one has time-aggregated counts for a larger number locations, a
pragmatic approach is to compute a time-aggregated matrix by calibrating a static model, and
to distribute this matrix over multiple time slices proportional to the patterns observed in the
time-differentiated counts, see De Romph et. al. (1994).

Apart from aggregation level requirements, another concern when applying a static model
to a subnetwork such as a motorway corridor is that the derivation of many static models
explicitly relies on the definition of a trip as being a movement from origin to destination, usu-
ally in relation to human activities such as work, leisure or shopping. For this reason the appli-
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cation of such a model to a subnetwork would not be theoretically justified.
An exception is a model that predicts the most likely trip matrix, given a set of traffic

counts, to be the one that maximises entropy (Van Zuylen and Willumsen, 1980). Examples of
dynamic or at least time-dependent approaches using this assumption are Willumsen (1984)
and VanAerde et. al. (1993).

Another option is to experiment with a model for which validity for a full network implies
validity for subnetworks (Van Der Zijpp and De Romph 1994, 1995). A model that was shown
to have such properties is the well known gravity model with exponential deterrence function.
This model defines the following relation:

fij =aibjexp(-βcij) (2.1)

with:
ai entry production ability
bj exit attraction ability
cij generalized travel costs
β parameter in deterrence function

2.2.1  Dynamic models

Applying dynamic models to the EE-estimation problem implies taking the time-varying
nature of EE-flows into account. On the one hand this makes the estimation of EE-travel
demand more complex, as compared to the static case, a larger number of unknown parameters
need to be estimated. On the other hand, in combination with dynamic models one may use
time-series of observations rather than time-aggregated observations.

The dynamic models that are considered in the present context impose certain continuity
requirements on the EE-flows or variables related to EE-flows. Such modelling assumptions
help to resolve the under-specification of the dynamic EE-estimation problem, as now multi-
ple sets of observations become relevant for the EE-flows in a given period.

As an example consider the assumption of constant split ratios discussed in chapter 1. For
the example network shown in figure 1.3 this assumption helps to solve the split proportions
and hence the EE-flows. A similar line of reasoning can be applied to dynamic EE-estimation
at different levels. This is illustrated in figure 2.1. In this example the gravity model (2.1) is
referred to with arrow A. One can use the assumption that the model parameters ai and bj are
slowly varying in time (arrow B) (see Van Der Zijpp and De Romph 1994, 1995), or one can
use the assumption that the matrix cells are slowly changing (arrow C) (see Ashok and Ben-
Akiva, 1993). Finally one can use the assumption that the split parameters are slowly changing
(arrow D) (see e.g. Cremer and Keller, 1981).

Since the matrix of split proportions is implied by the matrix of EE-cells, assuming slowly
varying EE-matrix cells also implies slowly varying EE-split matrix cells. The opposite of this
is not true, as variation in entry flows may result in variation in EE-flows, while the EE-splits
remain constant. Hence C represents a stronger assumption than D. For a similar reason B rep-
resents a stronger assumption than C.

2.3 Predictive capabilities versus model fit

A model can be considered as a mathematical simplification of the real world. In the previ-
ous sections various underlying ideas of models have been discussed. In the present context,
calibration of a ‘hidden’ model, or estimation of its parameters, are used to select the best of
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many possible states in view of a given set of observations. An ever recurring issue when
specifying a model is its level of complexity. On the one hand, there should be enough data to
estimate the parameters in the model, i.e. the model should be identifiable. On the other hand
the model should not oversimplify, i.e. it should not overrule observations that represent valu-
able information. The following example was taken from Van Der Zijpp and Heydecker
(1996), and discusses the issue of model selection.

Example
Consider a transport system for which the travel demand T is to be estimated. Travel

demand is derived from human activities such as work, shopping or leisure activities and is
influenced by a large number of factors. Suppose all factors that influence travel demand are
summarized in a state vector s. This vector then implies the size of the travel demand vector
T(s). Observations are denoted as o(s), and are assumed to represent sums of elements of the
vector T(s).

The present example is concerned with selecting the best model from a range of alterna-
tives. In this context a model is thought of as a set of relationships to be satisfied by the EE-
flow vector. In order to define ‘best’ in a more precise manner, define (o) as the estimate
corresponding to the kth model, and define the expected model prediction error for model k
as:

Es[ d(T(s), (o)) ] (2.2)

The estimation procedure is to be made precise later, for the time being one can think of
(o) as a least squares estimate. The function d(.,.) denotes some distance measure, e.g. L2.

Measure (2.2) is defined in terms of an unknown functional form T(s) and a probability distri-
bution of s, and hence does not give any direct guidelines in selecting a model.

In order to bound this measure to a minimum and a maximum, the specification gap is def-
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Distribution

EE-flows

EE-splits

t=1

Production/Attraction
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EE-splits
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Figure 2.1: Structure of time-dependent model
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defined as:

Es[ d(T(s),Tk*(s)) ] (2.3)

where Tk*(s) denotes the projection of T(s) on the space of model predictions of model i,
see figure 2.2. This gap provides a lower bound for (2.2). The more a model restricts the space
of permitted solutions, the larger is this gap. The size of this gap does not depend on the qual-
ity or amount of data that is represented by o(s).

 Furthermore, define the estimation gap as:

Es[ d( (o),Tk*(s)) ] (2.4)

This represents the expected difference between the optimal model prediction Tk*(s) and
the actual model prediction (o). The estimation gap decreases if extra (well posed) con-
straints are added, either in the form of extra observations, or in the form of extra modelling
assumptions. As an example of this mechanism, consider at the one extreme a ‘fixed-flow’
model that fixes all EE-flows to 1. For this model the estimation gap such as defined by (2.4) is
zero. At the other extreme consider the ‘empty’ model that does not impose any restriction on
the EE-flows. For this model the estimation gap reaches a maximum.

 Due to the triangle inequality, a lower and an upper bound for (2.2) can be expressed using
(2.3) and (2.4):

Es[ d(T(s),Tk*(s)) ] ≤ Es[ d(f(s), i(o)) ] ≤ Es[ d(f(s),Tk*(s)) ]+Es[ d( (o),Tk*(s)) ] (2.5)

-end of example-

Above example illustrates that the best model choice depends on a trade-off between the
specification gap and the estimation gap, and that the outcome of this trade-off largely depends
on the amount and quality of data that are available. As a guideline for handling this trade-off
the following principle will be used:

T k^

T k^

T̂ T k^

s

T(s)

Tk*(s)

T̂k(o)

state of transport system

travel demand

o(s)

observations
model predictions

Figure 2.2: Travel demand, T(s), is a part of the system state, s. Observations, o(s), are derived 
from travel demand.
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“of the models, that are identifiable in view of a given set of data, use 
the one that represents the weakest set of assumptions”

Applying this principle to the EE-estimation problem at hand results in using the assump-
tion of slowly varying split probabilities as a point of departure.

2.4 The motorway model

2.4.1 Model assumptions

In this section the model is specified that will allow us to estimate the EE-flows from time
series of observations. At the heart of the model are the split probabilities bij(t), defined by the
probability that a trip that enters at i in period t is destined for exit j, i.e.:

bij(t)≡Prob[ exit=j | entry=i ∧ period=t ] (2.6)

The split probabilities are summarized in a vector b(t). Although the split probabilities are
assumed to be fixed within each period, they are allowed to vary from period to period. This
variation is expressed by the equation:

b(t+1)=b(t)+u(t)+w(t) (2.7)

where u(t) denotes the systematic component, and w(t) denotes a zero mean random compo-
nent. The twenty-four-hour average of u(t)+w(t) is zero. However, historic information may
give rise to specifying nonzero values of u(t), see chapter 6. The random variation in the split
probabilities is only small, i.e.:

E[wij(t)
2]<<1 (2.8)

The covariance matrix of w(t) will be denoted with Qt, the properties of this matrix are con-
sidered in more detail in chapter 6. The distribution of the initial state b(1) is assumed to be
uniform over the range of permitted values.

A difference exists between on the one hand the idealized entry flows (t) and observed-
link flows (t) defined by (1.5) and (1.6), and on the other hand their corresponding traffic
counts q(t) and y(t). These differences are due to physical observation errors, i.e. miscounting,
and in case of y(t), also to assignment errors. Assignment errors occur as a result of an inaccu-
rate specification of the MTCS (see section 1.3), or as a result of travel time dispersion among
vehicles. The relationship between [ ′(t) ′(t)] and [q′(t) y′(t)] is defined by:

q(t) = (t)+r(t) (2.9)

and:

y(t) = (t)+s(t) (2.10)

where r(t) and s(t) are zero mean noise terms.
Finally, it is assumed that the noise terms w(t), r(t) and s(t), t=1,2,… not only are zero

mean, but also mutually independent, i.e:

E =0, E = δtp (2.11)
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The definition (2.6) and assumptions (2.7-2.11) will be referred to as the motorway model.
A graphical representation of the causal dependencies specified in this model is given in figure
2.3.

2.4.2 Model implications

The motorway model specifies a number of causal dependencies, and has the vectors of
split probabilities b(t), t∈IN+, as its unknowns. In this thesis we consider the problem of deter-
mining the most up to date estimate of b(t) given the observations {q(1), q(2)…q(t)} and
{y(1), y(2)…y(t)}, i.e. the problem of filtering the process {b(t)} from the observation proc-
esses {q(t)}and {y(t)}.

The split probabilities can only be observed via the EE flows fij(t). In the light of definition
(2.6), the EE flows fij(t) should be considered as realizations of random variables; According
to (2.6), the EE flows entering at i during period t should be considered as the cumulative out-
comes of i(t) independent trials, where the probability of contributing to EE flow fij(t) is
given by split probability bij(t). The conditional probability distribution of f(t), given the ideal-
ized entry flows (t) and the split probabilities b(t) is hence given by the following multino-
mial distribution, see Lehmann (1983), pg.28:

P[f(t)| (t),b(t)]= (2.12)

The flows f(t) are not observed directly but give rise to observations q(t) and y(t). All
knowledge about the dependency of q(t) and y(t) on b(t) is captured in the likelihood function

qi(t)ri(t)

∑ Delay I R T
wij(t) bij(t+1) bij(t)

yj(t)sj(t)

fij(t)f1j(t) fmj(t)

∑

∑

∑

… …

Figure 2.3: Causal dependencies in the motorway model. According to the model, the idealized 
entry flows i(t) are distributed over the EE flows fij(t) in a series of Independent 
Random Trials (IRT), using the split probabilities bij(t).
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L[b(t);q(t),y(t)] defined by:

L[b(t);q(t),y(t)]≡p[q(t),y(t)|b(t)] (2.13)

The assumptions of the motorway model imply a characteristic distinction between the two
categories of observations, q(t) and y(t): For q(t), there is no causal dependency on b(t) while
for y(t) there is (see also figure 2.3). The absence of causal dependencies of q(t) on b(t)
implies that the probability distribution of the entry volume counts is invariant for the split-
probabilities, i.e. P[q(t)|b(t)]=P[q(t)]. Therefore the likelihood (2.13) simplifies to:

L[b(t);q(t),y(t)]=p[y(t)|q(t),b(t)].p[q(t)] (2.14)

In the context of estimating the split probabilities b(t), the entry volume counts may hence
be dealt with as if they were given constants, and instead of considering the likelihood func-
tion (2.14) we may as well consider:

L[b(t);y(t)]≡p[y(t)|b(t),q(t)] (2.15)

It is not possible to evaluate L[b(t);y(t)] in an analytical way. This would require extra
assumptions about the distribution of the random variables r(t) and s(t), but even then would
require an explicit analytical expression for the conditional probability distribution of (t),
given (t) and b(t). As the elements of (t) are defined by sums of the multinomially distrib-
uted flows f(t), see (1.6), a tractable expression for p[ (t)|b(t), (t)], let alone for
p[y(t)|b(t),q(t)], is not available. The absence of an analytical expression for the likelihood
(2.15) needs not be an obstacle for the maximum likelihood estimation of the split probabili-
ties; Nihan and Davis (1989) describe such an estimator, details of which will be given in sec-
tion 3.4.1. However, this estimator is only valid under the rather restrictive assumptions
r(t)=s(t)=w(t)=0, t∈IN+, and hence does not apply to the general case described by the motor-
way model.

More widely applicable results are obtained if p[y(t)|q(t),b(t)] is described in terms of the
first and second moment. The first moment corresponding to p[y(t)|q(t),b(t)] is given by
E[yk(t)|q(t),b(t)], for k=1,2,…l. This expression will be evaluated below. In view of equation
(2.10) E[yk(t)|q(t),b(t)] satisfies:

E[yk(t)|q(t),b(t)]=E[ k(t)|q(t),b(t)]+E[sk(t)|q(t),b(t)]=E[ k(t)|q(t),b(t)] (2.16)

As a result of lemma (C.1) it follows that:

E[yk(t)|q(t),b(t)]=E [ E[ k(t)| (t),b(t)] |q(t) ] (2.17)

When expanding k(t) applying (1.6), and using:

 E[fij(t)| i(t),bij(t)]= i(t)bij(t), (2.18)

and:

E [ i(t)|q(t)]=qi(t), (2.19)

the following result is obtained:

E[yk(t)|q(t),b(t)]=E [ |q(t) ]= (2.20)
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Result (2.20) may be expressed in a more compact way using matrix notation:

E[y(t)|q(t),b(t)]=H′(t)b(t) (2.21)

where H(t) is a matrix of which the height equals the number of elements in b(t) and the width
equals the number of elements in y(t), and of which the nonzero elements are given by:

Hx(i,j),k(t) = τijk qi(t) (2.22)

for i=1,…m, j=1,…n, k=1,…l, and x(i,j) representing the location of bij(t) in the vector b(t).
The fact that the expectation of y(t) is linear in b(t) gives rise to the use of the following

measurement equation:

y(t)=H′(t)b(t)+v(t) (2.23)

where v(t) is a zero mean ‘measurement error’ accounting for:
1. specification errors in H′(t) that are caused by observation errors in the entry volumes 

(only applicable if r(t)≠0),
2. random variation in the EE-patterns as a result of the uncoordinated choices of motorists, 

and
3. observation errors in the link volumes (only applicable if s(t)≠0)

From (2.11) it follows that v(t) and w(t) are independent and v(t) and v(p) are independent if
t≠p. Moreover v(t) and w(t) are zero mean, therefore:

E =0, E = δtp (2.24)

for some matrix Rt.
In chapter 5 it will be shown that the assumptions of the motorway model allow for the der-

ivation of the covariance matrix Rt. In combination with appropriate statistical methods this
should, at least in theory, lead to better estimates of b(t), relative to those obtained when using
an arbitrary matrix.

Besides the traffic counts q(t) and y(t) another source of information about b(t) stems from
the definition (2.6). From this definition it follows that the split probabilities should be non-
negative and smaller than unity;

0≤bij(t)≤1 (2.25)

for i=1,2,…m and j=1,2,…n. Moreover, for each entry, its associated split probabilities add up
to one:

=1 (2.26)

for i=1,2,…m. Constraints (2.25) and (2.26) are referred to as the natural inequality and equal-
ity constraints. Again, (2.25) and (2.26) may be written in a more compact format in matrix
notation with:

0≤b(t), (2.27)

w t( )
v t( )

w t( )
v t( )
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and:

π′b(t)=1 (2.28)

where π is a matrix with the height mn and the width of m of which the nonzero elements are
given by:

πx(i,j),i = 1 (2.29)

for i=1,…m, j=1,…n, and x(i,j) representing the earlier introduced arrangement of the ele-
ments bij(t) in the vector b(t). This matrix will be referred to as a repeating column matrix

2.5 Conclusions and further research

Jointly, equations (2.7), (2.23), (2.24), (2.27) and (2.28) describe a system, with the traffic
counts q(t) and y(t) as its observations, and the split probabilities b(t) as the parameters that
are to be estimated, t∈IN+.

In view of this estimation problem the following research approach was chosen:
 • A summary is given of the methods known from literature that have in common the 

assumption of slowly varying split probabilities, and it is described how the underlying 
assumptions of these methods relate to the assumptions of the motorway model (see chap-
ter 3).

 • A new estimator is derived for the split probabilities b(t) (see chapter4). Derivation of such 
an estimator is needed as none of the known estimators deals with the inequality con-
straints (2.27) in a satisfactory manner.

 • The assumptions of the motorway model are utilized to derive an approximation Rt of the 
covariance matrix for the noise term v(t) (see chapter 5).

 • Completely observed EE-matrices derived from toll tickets are analysed to get some quan-
titative insight into the rate of change represented by the covariance matrix Qt of w(t), and 
a mechanism is proposed to derive the vector representing the systematic component u(t) in 
that change from historic data (see chapter 6).

The results obtained in chapters 4-5 can be extended to allow for the usage of a new cate-
gory of AVI-based traffic observations as described in chapter 7. A comparison between the
error of estimation of the methods known from literature and the new method proposed in
chapter 4, using synthetic data is made in chapter 8, and in chapter 9 using empirical data.
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3. Review of Split Ratio Methods
3.1 Introduction

This chapter reviews existing dynamic EE-estimation methods. The emphasis in the dis-
cussion will be on methods that are based on the assumption of slowly varying split fractions,
referred to as split ratio methods. Many of such procedures have been proposed after the first
publications on this subject, see e.g. Cremer and Keller (1981). A wide range of estimation
techniques is used, varying from parameter optimization techniques such as least squares and
constrained optimization to statistically based techniques like maximum likelihood estimation
and Kalman filtering.

A few remarks apply to the contents of this chapter:
 • Initially, split ratio methods were applied to intersections only. Later this was extended to 

linear networks such as motorway corridors. Both network structures have in common that 
each EE-pair is connected via at most one path. However in the case of motorway corridors 
the issue of determining travel delays and synchronising the observation periods arises. 
This issue was discussed in chapter 1 and will be ignored in this chapter except for section 
3.4.5 where a number of approaches are discussed that deal with variation in travel time.

 • Many of the earlier introduced methods assume that the availability of observations is lim-
ited to entry and exit counts. However, on motorway corridors, traffic counts of internal 
link volumes may also be available. The method that will be developed in later chapters 
will therefore be able to use internal link counts as a part of its input. To make a fair com-
parison possible, the presentation of the existing methods in this chapter also involves their 
extension to the use of internal link counts.

 • Some of the methods described in this chapter, require that a quadratic function is mini-
mized. As these minimizations tend to be computationally demanding and eventually will 
have to be performed in real time, a considerable amount of attention has been paid to the 
implementation of efficient algorithms. The findings on this subject have been reported in 
appendix A.

3.2 The existing methods in the context of the motorway mode l

In several ways, the assumptions in the motorway model deviate from those that are usu-
ally adopted when applying a split ratio method. This section discusses these differences in
assumptions and their consequences for the resulting estimation problem.

One of these differences is the interpretation of the elements of b(t). These elements are
usually referred to as turning proportions, split ratio’s, split parameters or split fractions, and
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are defined as ‘the proportion of traffic from entrance i destined for exit j’ (Bell, 1991b, Bell et
al., 1991, Nihan and Davis, 1987), or simply with the formula bij(t)=fij(t)/qi(t) (Cremer, 1983,
Cremer and Keller, 1981, 1984, 1987, Gang-Len Chang and Jifeng Wu, 1994, Keller and
Ploss, 1987), as opposed to the definition of split probabilities given in equation (2.6).

Another difference is that usually no distinction between idealized flows and traffic counts
is made, i.e. it is assumed that the traffic counts are error free observations of the idealized
flows, and hence satisfy q(t)= (t) and y(t)= (t). In some instances the assumption y(t)= (t) is
relaxed to y(t)= (t)+e(t), where e(t) accounts for ‘travel time lags, counter errors, etc.’ (e.g.
Nihan and Davis, 1987).

These assumptions are usually combined with the assumption that the state b(t) is constant
or slowly varying, i.e. b(t)=b(t-1) or b(t)≈b(t-1).

Applying these assumptions leads to a measurement equation identical to (2.23). Also the
state equation (2.7), inequality constraints (2.27) and equality constraints (2.28) are still appli-
cable. Therefore the estimators that have been proposed in literature and are described in this
chapter can also be applied to the estimation problem (2.7), (2.23), (2.24), (2.27) and (2.28)
that is central to this thesis.

However, as a consequence of the traditional assumptions, a large portion of the variation in
the quotient fij(t)/qi(t) will be attributed to variation in bij(t) rather than to random effects
inherent to the uncoordinated choices of motorists. Also observation errors contained in q(t)
and y(t) are fully attributed to variations in b(t). The traditional assumptions do not imply par-
ticular recommendations about the covariance matrix Rt of the measurement error v(t), and
leave the choice of this matrix open. Not all publications are clear about the covariance matrix
that is assumed for v(t). For example Cremer and Keller (1987) only mention that a time-inde-
pendent covariance matrix was assumed. Nihan and Davis (1987) are more explicit, and put
into words the method that is presumably used by most researchers. They report that a diago-
nal matrix is used which is defined by the identity matrix multiplied by a factor. This factor is
treated as a design parameter and is fixed after some experimenting.

If the motorway model is adopted, the assumption fij(t)=qi(t)bij(t) is replaced with the
assumption of a conditional distribution of f(t) given by (2.12), and observation errors in q(t)
and y(t) are modelled with the zero mean random variables r(t) and s(t). These assumptions
allow for the derivation of a covariance matrix of the measurement error v(t) in (2.23), as will
be shown in chapter 5.

3.3 Implemented methods

Only a subset of all methods ever proposed in literature has been implemented as a refer-
ence for the method that will be developed in later chapters. These methods have been selected
on the basis of the type of input data that they use, the system behaviour that is taken into
account, and the results that were claimed in literature for these methods. Another criterion is
that they can be applied in practical context i.e. no computational or data requirements should
prevent the method from being used. In an attempt to make the review complete, methods that
have not been implemented are discussed in the section ‘other methods’.

q̃ ỹ ỹ
ỹ
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3.3.1 Least Squares Method

The least squares estimate is defined as follows:

bLS(t)≡ (3.1)

where:

(3.2)

where H(k) is the measurement matrix defined in (2.22). Note that the split vector b is consid-
ered to be a constant here, but that the estimate of this vector, bLS(t), has a time index because
with every new set of observations, the estimate is adjusted. When this method was first
applied to EE-estimation, see Cremer and Keller (1981) and Cremer and Keller (1984), the
vector of observations consisted of exit volume counts only. Rather than simultaneously solv-
ing all split parameters, the split parameters associated with each exit were solved separately
through minimization of:

(3.3)

It can be shown that if {y(k)} are vectors of exit flow counts, minimization of (3.1) and
(3.3) will yield identical estimates. The matrix notation (3.1) however allows the method to
deal with internal link counts too. The target J(b,t) can be rearranged to:

(3.4)

Therefore (3.1) may be written as:

bLS(t)≡ - 2Ψ(t)′b + b′Ω(t)b

with:
Ψ(t) = Ψ(t-1) + H(t)y(t)

Ω(t) = Ω(t-1) + H(t)H(t)’ (3.5)

The matrices Ψ(t) and Ω(t) have sizes mn by 1 and mn by mn respectively. In order to com-
pute the vector bLS(t) for which J(t) reaches its minimum, the gradient vector is set to zero:

−2Ψ(t) + 2Ω(t)bLS(t) = 0 (3.6)

From which it follows that the solution to the minimization problem (3.1) is:

bLS(t) = Ω(t)-1 Ψ(t) (3.7)

An implicit assumption in (3.7) is that the matrix of second derivatives of J(t), Ω(t), is not
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only invertible but also positive definite. The matrix Ω(t) is invertible if the rank of this matrix
equals the number of columns in it. This is the case if mn independent columns can be found in
the matrices H(1), H(2),…H(t). If the matrix is invertible then the positive definite property
follows from the structure of the matrix.

A non-recursive least squares approach like described above is usually referred to as Least
Squares (LS).

From equations (3.5) and (3.7) it can be seen that it is possible to employ the least squares
method using a constant amount of storage space. Moreover, it is generally known that the LS
estimate can also be computed with a recursive algorithm (a derivation of such a recursive
algorithm for the scalar measurement case of this problem was given in Nihan and
Davis,1987, 1989). The recursive equivalent of (3.5) and (3.7) is given by (see Ljung and
Söderström, 1983):

bRLS(t) = bRLS(t-1) + Kt [y(t)- H(t)′bRLS(t-1)]

Kt = P(t-1)H(t) [H(t)′P(t)H(t) + I]-1

P(t) = P(t-1) - P(t-1)H(t) [H(t)′P(t)H(t) + I]-1H(t)′P(t-1) (3.8)

In this formula P(t) can be shown to equal Ω(t)-1. The calculation time is reduced in com-
parison with the non-recursive algorithm (3.7), as now only a matrix with a height equal to the
length of the measurement vector must be inverted rather than a matrix with a height that
equals the length of the state vector. Another use for (3.8) is to point out the relationship
between the least squares method and the Kalman filtering method. As is generally known, the
least squares method can be considered as a special case of Kalman filtering.

Equation 3.8 defines the Recursive Least Squares (RLS) method.
A natural extension of the least squares method to take into account time variation in the

split vector, is the introduction of a discounting factor. In this case the older observations are
considered to be less relevant to the current state of the split vector and are discounted accord-
ingly. The problem now changes to minimizing:

(3.9)

The first practical application of this method to EE-estimation goes back to Nihan and
Davis (1987). The solution to problem (3.9) can be derived along the lines of the derivation of
the least squares method, and is given by:

b(λ,t) = Ω(λ,t)-1 Ψ(λ,t)
Ψ(λ,t) = λ Ψ(λ,t-1) + H(t)y(t)
Ω(λ,t) = λ Ω(λ,t-1) + H(t)H(t)′ (3.10)

Also this algorithm has a recursive equivalent, see Nihan and Davis (1987) and Ljung and
Söderström (1983). In this case however no parallel with the Kalman filter exists. Algorithm
(3.10) will be further referred to as Discounted Least Squares (DLS). The parameter λ in this
algorithm is one of the design parameters and should satisfy 0<λ≤1. In practice some experi-
menting will be necessary to find the parameter value for which algorithm (3.10) gives the
‘best’ results. The DLS objective function is a generalization of the LS objective function.
Therefore in the rest of this chapter with no lack of generality, the DLS objective function will

J λ t,( ) λ
t k−

y k( ) H′ k( )b−
2

k 1=

t

∑=



3.3 Implemented methods

23

be considered.

3.3.2  Inequality Constrained Least Squares Method

Formulas (3.7) and (3.10) do not guarantee that the natural inequality constraints (2.25) are
being met. Imposing these conditions would therefore improve the estimate. On the other
hand, this changes the minimization problem from an unconstrained minimization into an ine-
quality constrained minimization problem:

bICLS(t)= - 2Ψ(t)′b + b′Ω(t)b

subject to: 
0≤b≤1 (3.11)

In fact this problem falls in the category of quadratic programming problems. It consumes
much more computation time than the unconstrained problem. Note that the number of con-
straints is 2mn. The constraints can also be written in the form:

eij.b≥0 ∧ eij.b≤1
i=1,…m, j=1,…n (3.12)

where eij the unit vector with a 1 on location x(i,j) and 0 elsewhere. A constraint is said to be
binding at point b if the equality holds for that point. From (3.12) it follows that at most mn
constraints can be binding at a time and that the binding constraints are orthogonal, i.e.
eij.epq=0 if i≠p ∨ j≠q. In appendix A a number of minimization procedures are described that
employ this special property of the minimization problem.

3.3.3  Fully constrained least squares

Beside the inequality constraints, the split parameters must also satisfy certain equality
constraints. As the split parameters denote the expected shares of entry flows that are destined
for certain exits, the total of these shares should equal one by definition. Imposing this knowl-
edge on the split estimates should therefore improve the estimate. This results in the following
constraint minimization problem:

bFCLS(t)= - 2Ψ(t)′b + b′Ω(t)b (3.13)

subject to:

0≤b and π′b=1 (3.14)

where π is the repeating column matrix defined in (2.29). The method that corresponds to this
minimization problem will be referred to as Fully Constrained Least Squares (FCLS), and
was proposed in Cremer and Keller (1987). Problem (3.13) may be converted to an inequality
constraint problem. For this purpose, define a vector b1 with:

b1≡[b11…b1,n-1 ……bm1…bm,n-1]′ (3.15)

and a vector b0 and matrix G in such a way that:

argmin

b
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⇔ , i=1,…m (3.16)

Now problem (3.13) can be restated as:

bFCLS= (3.17)

with:

= - 2[Ψ(t)′Gb1- b0′Ω(t)G]b1+b1′G′Ω(t)Gb1′

0≤b1

f i .b1≤1, i=1,…m (3.18)

where the nonzero elements of the vector f i  are given by:

f i
z(i,a)=1 ,

i=1,…m , a=1,…n-1
z(i,a)=(i-1)(n-1)+a (3.19)

Solving this inequality constrained problem and substituting the resulting b1(t) in (3.16)
gives an estimate b(t) that satisfies all conditions. For solving this problem the algorithms of
the inequality constrained problem can be used. Of these algorithms the projected conjugate
gradients is the best alternative to obtain the exact solution.

Note that, in contradiction to (3.11), the constraints in problem (3.13) are no longer mutu-
ally orthogonal. This makes the projection of the search direction on space of feasible direc-
tions more complex, see appendix A for details.

3.3.4 Kalman Filtering

The previous methods can all be viewed upon as parameter optimization methods. They are
designed to minimise the distance between measured and predicted values. Apart from these
methods, a number of statistically based methods are identified. These methods are defined in
terms of the probability distributions related to the unknown parameters b(t). One of these
methods is the Kalman filter. The Kalman filter is a widely applied method for parameter esti-
mation in dynamic systems. It has been applied to the problem of EE-estimation by various
researchers, starting with Cremer and Keller (1987) and Nihan and Davis (1987). Prior to
using a Kalman filter, two equations should be supplied: the state equation and the measure-
ment equation. The state equation describes how the unknown parameters evolve through
time. The measurement equation describes the relation between the unknown parameters and
the measurements. In both equations it is possible to specify uncertainty by way of noise
terms. The first and second moments of the noise terms have to be specified.

In the present context the state parameters represent the split probabilities, and the state
equation and measurement equation are given by equations (2.7) and (2.23) respectively. The
properties of the noise terms are given in (2.24). For the methods described in literature the
systematic component in the change of b(t), represented by u(t), is chosen to be zero.

Given a state equation and measurement equation, a recursive estimator for b(t) is defined

b b
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by the Kalman filter (Kalman, 1960). The Kalman filter equations for the problem (2.7),
(2.23), (2.24) are:

b(t)=b(t-1)+Kt[y(t)-H(t)′b(t-1)]+u(t)

Kt=Σt-1H(t)[H(t)′Σt-1H(t)+Rt]
−1

Σt=Σt-1− Σt-1H(t)[H(t)′Σt-1H(t)+Rt]
−1H(t)′Σt-1 + Qt (3.20)

These equations define a recursion that should be started with an initial estimate b(0) and
an initial covariance matrix Σ0. Given the assumptions (2.7), (2.23) and (2.24), the Kalman
filter defines a minimum variance linear estimator, i.e. the estimate is a linear function of the
measurements y(1)…y(t), and the filter implicitly finds the matrixA and vector c that solve the
following problem:

minimize (A,c): E[||b(t)-A.[y(1), y(2)…y(t)]-c||2] (3.21)

Moreover, this estimate can be shown to be unbiased. If, besides earlier assumptions, the
noise terms and the initial state have Gaussian distributions, the Kalman filter can be shown to
produce unbiased estimates that have minimum variance over all estimators, see Anderson
and Moore (1979) or Ljung and Söderström (1983).

Reliability of estimates
Kalman filtering has numerous advantages such as the computational efficiency, the possi-

bility to process interdependent measurements and its recursive formulation. An additional
advantage is that together with the estimate for the split matrix, a covariance matrix is calcu-
lated. This matrix gives an indication of the reliability of the estimate. In theory, this matrix
can tell a traffic engineer whether the accuracy of an EE-matrix estimate is sufficient or that
extra observations need to be made available, for example by installing extra induction loops.

The reliability of the estimates generated with the Kalman filter however rely on the accu-
racy of the specifications (2.7), (2.23) and (2.24). Comparisons that have been made between
Kalman filtering and other methods, by for example Cremer and Keller (1987), can therefore
not be seen apart from the choice of covariance matrices Rt and Qt, and the initial state,
defined by b(0) and Σ0. Until now a satisfactory way to supply these values has not been pre-
sented. The issue of specifying proper values for Rt and Qt is addressed in chapters 5 and 6
respectively.

Dealing with inequality constraints
Another fundamental problem with the application of the Kalman filter equations to the

estimation of the split proportions is that there is no way to insure that the natural inequality
and equality constraints are met. Under circumstances where one or more of the inequality
constraints are binding, the existence of these constraints is in contradiction with the random
walk assumption (2.7). Therefore from a theoretical viewpoint the Kalman filter can not be
applied directly to the problem of EE-estimation. Nihan and Davis (1989) propose a scheme
of ‘normalisation’ and ‘truncation’ but these operations undermine the theoretical justification
of the statistical method. In Van Der Zijpp and Hamerslag (1994a) a number of modifications
have been proposed to overcome this difficulty. These will be the basis for the development of
a new estimation procedure in chapter 4.

In the present context we discuss how to prevent the traditional Kalman filter from produc-
ing estimates that do not satisfy the inequality constraints. If in (3.20), b(t) does not satisfy the
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inequality constraints (2.27) then the following constrained estimate represents a better choice:

bCONSTR(t)≡max(0,min(1,b(t))) (3.22)

This can be seen as follows: Jointly (3.22) and the requirement 0≤b(t)≤1 imply that for any
b(t):

[b(t)-bCONSTR(t)]′.[bCONSTR(t)-b(t)]≥0 (3.23)

Hence:

||b(t)-b(t)||2=||b(t)-bCONSTR(t)+bCONSTR(t)-b(t)||2

=||b(t)-bCONSTR(t)||2+2[b(t)-bCONSTR(t)]′.[bCONSTR(t)-b(t)]+||bCONSTR(t)-b(t)||2

≥||b(t)-bCONSTR(t)||2 (3.24)

and consequently:

Ε[ ||b(t)-bCONSTR(t)||2 ]≤Ε[ ||b(t)-b(t)||2 ] (3.25)

Equation (3.25) shows that with respect to the expected error, bCONSTR(t) is at least as good
an estimator as b(t). This fact is not contradicting the statement that b(t) is a solution to (3.21),
as bCONSTR(t) is not linear.

As an alternative to applying statement (3.22) only to the output of the recursion (3.20), this
statement may also be included in the recursion (3.20). In this case the constraining will affect
the evolution of b(t) (but not of Σb(t)) in time.

We will refer to the latter strategy as recursive constraining. Since the state satisfies the ine-
quality constraints (2.27) at all times, this seems like a useful thing to do. In fact, previous pub-
lications on the subject report similar strategies, see e.g. Nihan and Davis (1987). At present it
will not be possible to prove or disprove on theoretical grounds that recursive constraining
leads to estimators with a lower expected error of estimation. Therefore the option of recursive
constraining is tested separately, see chapters 8 and 9.

3.4 Other methods

Implementing and testing all split-estimation methods that have ever been proposed is not
possible due to time constraints, and also not necessary to evaluate the theory that is described
in this thesis. In this section a number of methods is discussed that for different reasons have
not been implemented.

3.4.1 Maximum Likelihood

When applied to the problem of estimating the split probabilities in the motorway model the
maximum likelihood (ML) estimate would be defined by:

maximize: P[y(1), y(2),…y(t)|b(t)] (3.26)

Calculation of the ML-estimate normally requires the derivation of above probability distri-
bution. The elements of y(k) are sums of flows, and the conditional distribution of the flows
given the split-probabilities and the entry flows is (see chapter 2 for more details):
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A tractable expression for the probability distribution of {y(1), y(2),…y(t)} is not availa-
ble, as this would involve deriving a probability distribution for the sum of multiple multino-
mial random variables. Nihan and Davis (1989) presented an ML-approach that did not
require this derivation, by using the ‘EM-algorithm’ as proposed in Dempster et al. (1977).
This was done for the simplified system in which b(t) is constant rather than slowly varying,
and in which no noise on the entrance volume observations is present. The resulting algorithm
was non-recursive.

Another ML approach has been presented by Bell et al. (1991) (see also section 3.4.5). This
approach is fully disaggregate and is particularly useful to describe the phenomenon of pla-
toon dispersion. The proposed method needs individual vehicle data and is computationally
too demanding to be useful in practice.

3.4.2  Recursive formula

The first use of a split ratio method appears to be reported by Cremer and Keller (1981). In
this instance a recursive formula was proposed for tracking the split-parameters, and conver-
gence was shown for this method. In later work of these authors the recursive formula was
replaced by more ‘standard’ algorithms, like least squares and constrained least squares.

3.4.3 Correlation method

In order to apply the methods that have been described earlier in this chapter certain
requirements with respect to the locations on which traffic is counted must be met. The mini-
mum requirement is that traffic is counted at all entries and at at least one exit. In this case
split probabilities can be estimated through minimization of (3.3). A method that does not
have this limitation was proposed in Keller and Ploss (1987). It uses the cross correlation
between entry flows and exit flows as an estimate for the split parameter:

with:
qi: average value of qi(k), k=1,2,…t
yj(k): exit flow at exit j in period k
yj: average value of yj(k), k=1,2,…t (3.28)

The method has been used in a project that involved traffic prediction and network optimi-
zation, see Ploss et al. (1990). The method can not be extended to deal with internal link
counts. The method has not been involved in comparative tests since it is expected beforehand
that its performance will be poor relative to methods such as RLS and FCLS.

3.4.4 Neural network approach

Neural networks are increasingly popular in traffic engineering and recently the first publi-
cations on EE-estimation using neural nets have appeared (Yang et al. (1992), Vythoulkas
(1993), Kikuchi et al. (1993), Shih-Miao Chin et al. (1994), Kwon and Stephanides (1994)).
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As this work does not reference the existing body of literature, comparative data between neu-
ral network methods and prediction minimization methods are not yet available.

Neural networks are expected to be successful when exit flows must be predicted from
entry flows. A neural net can capture non-linear relationships between input and output data,
and in practice an abundance of data are available to ‘train’ the network.

The prediction of exiting volumes implies that EE-estimation and traffic assignment are
combined in one method. Practical problems arise however if the aim is to estimate EE-flows
rather than link-flows. In this case there is no correspondence between the data that are availa-
ble for training, which are link flows, and the data that are needed as output, which are EE-
flows. The papers mentioned above, each solve this problem in their own way. Essentially, the
above literature can be divided into three classes:
 • Dynamic link volume predictors using upstream link volume counts
 • Dynamic link volume predictors not using upstream link volume counts
 • Dynamic EE-flow estimators

Dynamic link volume predictors using upstream link volume counts
In Yang et al. (1992) a two layered, feed-forward network was used with a ‘sigmoidal’

transfer function. Each input node corresponds to an entry, and each output node corresponds
to an output. The network was trained using the squared-error as a performance criterion. The
network was hence set up as a predictor of link flows. After the training was completed the
weights of the connections from the input to the output layers are interpreted as the split-
ratio’s. Also Vythoulkas (1993) sets up the neural net as a link volume predictor. However
Vythoulkas also experiments with alternative training rules for the neural network.

Dynamic link volume predictors not using upstream link volume counts
Kwon and Stephanides (1994) make a comparison between a neural network based exit vol-

ume predictor and a ‘new’ model based prediction that was developed to this end. Neither of
the methods use upstream link volume counts. This is an essential difference with the split
ratio methods that were described in this chapter. This will very probably result in poor predic-
tion results relative to methods that use upstream volume counts. On the other hand the predic-
tion horizon of these methods is no longer limited to the travel time of the vehicles on the
network.

Dynamic EE-flow estimators
Kikuchi et al. (1993) propose a method that from all proposed neural network predictors is

the most similar to the split ratio methods. Using the example of the OD-estimation problem
for a rapid transit line where the entering and exiting volumes at each station are observed and
the OD-matrix is to be estimated, they use a neural network to predict split proportions (which
in their paper are called ‘weights’). The penalty function that they use is equivalent to equation
(3.1). The data needed for training the neural net are available from the ticket administration.-
This seems a very sensible method and it would be interesting to compare the result of such a
method with that of other split ratio methods.

Shih-Miao Chin et al. (1994) choose a slightly different approach: they train a neural net-
work using an observed EE-matrix that was obtained via a license plate survey. The fact that a
completely observed EE-matrix is needed for training is a major disadvantage. It makes imple-
mentation of the method expensive and sensitive to changes in the traffic patterns.

Conclusion
The neural network approaches are appealing since they offer an easy way to implement
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nonlinear regression, while statisticians have very much trouble doing so. On the other hand
in at least a few publications, researchers seem to have been more concerned with the method
itself than with the choice of data that was fed into the method.

For example some neural net based approaches predict EE-matrices or link flows on the
basis of observed link flows from one period. In previous chapters it has already been shown
that this is impossible, unless a model of travel demand is used, since the assignment of traffic
is an irreversible process. So the best that can be said about these approaches is that the per-
formance might be equal to that of other static methods; given the input data that are fed into
the network it can not be expected to compete with methods that use time-series of observa-
tions.

Researchers who apply neural networks can take advantage of the models that were pro-
posed within the framework of split ratio methods, and by doing so, offer a realistic alternative
class of dynamic EE-estimation methods. A precondition to the successful application of neu-
ral networks to dynamic EE-estimation is however that time-series of observations are made
available to the neural net. Many of the methods described in this chapter are defined in a
recursive manner; these methods store only the last estimate and adapt this using the latest
measurement. This suggests that a similar approach might be successful for neural networks
too. In such a case the most recent estimate is fed back into the neural network as an input,
creating the possibility for a recursion.

The development and implementation of such a method is however left as a future research
topic. In this thesis we will concentrate primarily on improving EE-estimates by making use
of improved traffic models and mathematical analysis.

3.4.5 Combined estimators

The methods that have been described until now assume knowledge of an unambiguous
relation between dynamic EE-matrix and observed link flows. This implies that knowledge
about travel times is present, see chapter 1. For the practical experiments in this thesis the
travel times will be approximated from observations of vehicle speeds, and inaccuracies are
compensated for by increasing the duration of the sampling periods. In literature however a
few examples exist of methods that are aimed at simultaneously estimating travel times and
EE-matrices. In this thesis such methods are referred to as combined estimators.

Some researchers have pointed out that travel times can also be determined from cumula-
tive link flows only. The way this can be done is described in chapter 8, and is illustrated in
figure 8.2. If link flows are used to determine travel time then the simple linear relation
between split parameters and observations, (2.23), changes in a non-linear and highly com-
plex relationship. Gang-Len Chang and Jifeng Wu (1994) describe this relationship and actu-
ally present estimation methods (based on the extended Kalman filter) to estimate the
unknowns. Primarily this work is of theoretical value. In practice the estimation of travel
times from link flows does not work due to accumulating errors in the observation of the
cumulative link flows. Nevertheless elements of the proposed dynamic model formulation
certainly have potential to improve dynamic EE-estimation methods especially in circum-
stances where travel time is an unknown factor.

Two much more simple approaches are proposed in Bell (1991b). The first is based on the
assumption of a geometrical distribution of the travel times. In this approach a platoon disper-
sion factor αj is associated with each network exit, resulting in:

yj(t) =(1-αj)yj(t-1) + αj∑ i=1,2,…m bijqi(t) (3.29)
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In other words if bijk is defined as the proportion of the flow fij(t) that contributes to yj(t+k),
then bijk is defined by:

bijk=bijαj(1-αj)
k (3.30)

The advantage of this approach is that only one extra parameter per exit is introduced, while
at the same time the model is extended to transport networks with travel time dispersion. A
disadvantage is that random effects and dependencies are not modelled.

A second method proposed in Bell (1991b) is a method in which instead of one set of split
parameters, three sets of parameters are estimated, where the first, second and third set corre-
sponds with the fastest, middle, and slowest platoon respectively. This conceptually simple
method has the disadvantage that the number of unknowns increase by a factor of three This
means that in practice the number of independent equations, required to solve the unknown
parameters, is multiplied by a factor of three. Moreover a serial correlation between the obser-
vations will arise with which it is hard to deal in a statistical correct manner.

Since with time passing by, the unknown parameters themselves are subject to change it
might very well be impossible to estimate the unknown parameters with a satisfactory accu-
racy. Comparing the method proposed by Bell (1991b) with earlier methods such as proposed
by Cremer and Keller (1987) and Nihan and Davis (1987) the main difference is that the ear-
lier methods assume the travel time, for example on the basis of distances and observed
speeds, while the method of Bell (1991b) implicitly estimates the travel time. It is an open
question which of the methods works best in practice. This depends on the quality of the input
data and the variability in the EE-demand and travel times. Presumably the method that works
best in practice would be some intermediate form of the two variants.

The line of reasoning in Bell (1991b) can be taken one step further. In Bell et al. (1991) a
fully disaggregate method is proposed that comes down to matching every entering vehicle
with every exiting vehicle.

The method is described using the following symbols:
N  number of observed vehicles.
ik entry number of the kth entering vehicle

t1k entry time of kth the entering vehicle
jq exit number of the qth exiting vehicle

t2q exit time of the qth exiting vehicle
t(i,j) average travel time from entrance i to exit j
σ2 variance in travel time
∆ matching map. ∆kq=1 if the kth entering vehicle corresponds

with the qth exiting vehicle
Assuming that the travel times have a normal distribution, the following likelihood function

follows:

L[∆]= ∏k=1,2,…N ∏q=1,2,…N (3.31)

The matching map should satisfy feasibility conditions in order to let every entering vehicle
match with exactly one exiting vehicle:

bik jq,
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∑k=1,2,…N ∆kq=1, for q=1,2,…N
∑q=1,2,…N ∆kq=1, for k=1,2,…N (3.32)

Maximizing (3.31) under condition (3.32) gives the theoretical maximum likelihood esti-
mate for the totally disaggregate EE-estimation problem. Not surprisingly computational con-
straints keep this method from being applied to problems of realistic size. The number of
feasible matching maps is N!, and there does not seem to be a numerical method to minimise
(3.31) within acceptable computation time.

However it is not inconceivable that by making some proper approximations (3.31) and
(3.32) can be a basis for methods that use more aggregated data and at the same time incorpo-
rate travel time dispersion.

Finally, Ping Yu and Davis (1994) propose a nonlinear least squares method that replaces
the linear traffic assignment with a nonlinear traffic flow model. They suggest that EE-estima-
tion ‘may require the joint estimation of EE patterns and traffic flow model parameters’.Their
simulation results seem to support this hypothesis, although the differences with traditional
methods are only small.

3.5 Conclusions

In the past a variety of dynamic EE-estimation methods have been proposed. These meth-
ods all work with less detailed modelling assumptions than those specified in the motorway
model. In the chapters 4, 5 and 6 a method will be developed that takes all elements of the
motorway model into account and estimates the unknown parameters according to statistical
principles. The challenge is to show that this new method performs better then the existing
ones. It is envisaged that the new method can be developed by adapting the Kalman filter.

In order to be able to compare the existing methods with the new method, the existing
methods have been modified in such a way they can take a set of internal link counts as their
input. The following methods have been prepared for comparison with the new method:
 • Least Squares (equation 3.10)
 • Inequality Constrained Least Squares (equation 3.11)
 • Fully Constrained Least Squares (equation 3.13)
 • Kalman filter (equation 3.20)

The results of comparisons based on synthetic and empirical data will be described in chap-
ters 8 and 9.
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4. A Bayesian Estimator of Turning Proportions
4.1 Introduction

The aim of this chapter is to formulate an estimator for a class of linear discrete time sys-
tems that are characterized by the fact that their states slowly vary and at all times satisfy a
number of inequality constraints.

The method was designed for the purpose of estimating the split probabilities in the motor-
way model, thereby making use of the covariance matrix of the measurement error v(t) that
will be derived in chapter 5 and the covariance matrix of the random change w(t) that will be
derived in chapter 6. However, the findings of this chapter can easily be applied to other mod-
els for which the presence of inequality constraints is dominating.

As a starting point the following equations are used (see also section 2.4):

(a) b(t+1)=b(t)+u(t)+w(t)
(b) y(t)=H′(t)b(t)+v(t)
(c) 0≤b(t)≤1
(d) π′b(t)=1

(e) =0, (4.1)

where:
b(t) is the state vector with height m.n, t∈IN+

u(t) is the systematic change in the state vector
w(t) is the random change in the state vector
y(t) is the observation vector
H(t) is the measurement matrix
v(t) is observation noise
π is a repeating column matrix
Qt is the covariance matrix corresponding to w(t)
Rt is the covariance matrix corresponding to v(t)

Throughout the chapter, these equations are referred to as the motorway model. The objec-
tive is to estimate the state vector b(t), given knowledge of model (4.1) and the observations
y(t). Except for the inequality constraints (4.1c) this model is well researched, and standard
solutions exist for the state estimation for the unconstrained version of this model.

E w t( )
v t( )

E w t( )
v t( )

w ′ p( ) v ′ p( )
Q t 0

0 R t

δtp=
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Bayesian inference will be used to estimate b(t). The idea behind Bayesian inference is that
rather than some point estimate, a probability distribution of b(t) is computed. If Y(t) repre-
sents all observations available up to and including period t then this distribution is represented
by:

p[b(t)|Y(t)] (4.2)

In reality b(t) is a fixed value. The uncertainty expressed by (4.2) only exists on the observers
part. The density (4.2) is therefore referred to as the subjective probability distribution.

This chapter starts with explaining the ideas of Bayesian inference (section 4.2), followed
by the application of Bayesian theory to derive a recursive estimator for the split probabilities
in the motorway model (section 4.3). A standard method of dealing with the equality con-
straints (4.1d) is discussed in section 4.4. In the rest of the chapter, these constraints are
ignored. A separate section (section 4.5) treats the issue of converting a solution of the form
(4.2) into a point estimate for the state.

4.2 Basic steps in the Bayesian approach

In the present context, the derivation of point estimates from (4.2) is referred to as post-
processing. Postprocessing can be performed separately from a primary task: keeping track of
(4.2) for each new time period. This task can be performed by the use of a recursion consisting
of measurement updates and time extrapolations (see figure 4.1). This recursion is initialized
with an initial distribution. The elements of figure 4.1, which are measurement update, time
extrapolation, initial distribution and postprocessing, are discussed below.

Measurement update
Let Y(t-1) represent the collection of all observations available up to and including period

t-1 and y(t) represent the observation of period t. Hence Y(t) is defined recursively by:

Y(0)=∅
Y(p)=Y(p-1) ∪ y(p), p=1,2,…t (4.3)

The computation of a posterior, or filtered, distribution p[b(t)|Y(t)] from a prior distribution
p[b(t)| Y(t-1)] and the likelihood function p[y(t)| Y(t-1),b(t)] is referred to as the measurement
update. Information contained in a new observation may be incorporated in the subjective
probability distribution using Bayes’ rule:

= (4.4)

The denominator of expression (4.4) is referred to as the normalisation constant as it is
invariant for b(t). The numerator consists of the product of the Likelihood function (left) and
the prior distribution (right). The likelihood function defines the relation between the observed
quantity y(t) and the state parameter vector b(t) and follows from the observation model that is
adopted. Many model specifications are a special case of the form:

y(t)=ψ( b(t),ε(t) ) (4.5)

where ε(t) is a random component independent of Y(t-1). For models that can be written in
this form the measurement update equation simplifies to:

p[b(t)|Y(t)]=p[y(t)|b(t)].p[b(t)|Y(t-1)]/c[Y(t)] (4.6)

where the value of c[Y(t)] follows from the requirement that integral of p[b(t)|Y(t)] with

p b t( ) Y t( )[ ]
p y t( ) b t( ) Y t 1−( ),[ ] p b t( ) Y t 1−( )[ ]⋅

p y t( ) Y t 1−( )[ ]
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noninformative prior

y(1) Measurement Update

Time Extrapolation

BAYESIAN UPDATING POSTPROCESSING

Figure 4.1: Bayesian updating scheme. The procedure is initiated with a noninformative prior. Via 
a sequence of measurement updates and time extrapolations the probability distribution 
of the state is traced. Postprocessing is needed to make practical use of this distribu-
tion.

p[b(1)|∅]

filtered distribution
p[b(1)|Y(1)]

one step prediction
p[b(2)|Y(1)]

y(2) Measurement Update

b(2)
filtered distribution

p[b(2)| Y(2)]

b(1)
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respect to b(t) should be unity. This implies that the storage requirements as far as the meas-
urement update is concerned, are constant in time and equal the amount of data needed to char-
acterize p[b(t)|Y(t-1)], which may be an advantage if a large amount of data is observed. For
the problem at hand the simplification is justified, as (4.1b) is a special case of (4.5).

Time extrapolation
The process of deriving the, what will be called, one step prediction p[b(t)|Y(t-1)] from

p[b(t-1)|Y(t-1)] is referred to as the time extrapolation. The mathematical equation that defines
this update is given by:

p[b(t)|Y(t-1)]= p[b(t)|b(t-1),Y(t-1)].p[b(t-1)|Y(t-1)]db(t-1) (4.7)

In this update the relation between the previous and the current state is represented by
p[b(t)|b(t-1),Y(t-1)]. Again in many cases the storage of Y(t-1) is not necessary to determine
this density. This is particularly true if the time propagation can be modelled by:

b(t)=β( b(t-1),γ(t-1) ) (4.8)

where γ(t-1) is the outcome of a random process and is independent of Y(t-1). In this case
(4.7) simplifies to:

p[b(t)|Y(t-1)]= p[b(t)|b(t-1)].p[b(t-1)|Y(t-1)]db(t-1) (4.9)

For the problem at hand (4.9) may be used as (4.1a) is a special case of (4.8).

Initial distribution
Equations (4.6) and (4.9) constitute a recursion, that at one point should be started with an

initial distribution. This is what critics point out to be a weak spot of the Bayesian approach. If
(4.2) is considered as the probability distribution of b(t), conditioned on the available informa-
tion then the initial distribution should describe the ‘ignorant’ state of mind. This does how-
ever not lead to a well defined prior distribution. A general approach to this issue is the use
what is called a noninformative prior. For the split parameters that are bound to the interval
[0,1] a good candidate for such a distribution would be the uniform distribution. The discus-
sion about the initial distribution is partly of a theoretic nature as it can be shown that for a
dynamic system, such as the one shown in figure 2.3, the influence of the initial distribution on
the subjective probability distribution gradually reduces in time.

Postprocessing
Equation (4.2) does not represent a point estimate such as, for example, the ML-estimator.

However, given (4.2), point estimates can easily be derived. The two possibilities that are con-
sidered here are:
 • the subjective expectation, defined by:

bEXP(t)≡E[b(t)|Y(t)]= (4.10)

 • and the Maximum APosteriori (MAP) estimator, defined by the argument that maximizes 
(4.2):

b t( ) 0 1,[ ]∈
∫

b t( ) 0 1,[ ]∈
∫

b t( ) p b t( ) Y t( )[ ] b t( )d
b t( ) 0 1,[ ]∈

∫
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bMAP(t)≡ ( p[b(t)|Y(t)] ) (4.11)

see e.g. Ljung and Söderström (1983).

Given distribution (4.2), bEXP(t) would be the minimum variance estimator, i.e. bEXP(t)
would be equal to:

(4.12)

It should be noted however that (4.2) represents the subjective distribution of b(t) which is
influenced by the specification of the initial distribution. Therefore one cannot claim that
bEXP(t) is a minimum variance estimator unless one is certain that the initial distribution is
correctly specified, which only is true if the initial state is exactly known or if the initial state
is the result of a well described random experiment such as the tossing of coin.

4.3 The Bayesian approach applied to the motorway mode l

To derive a recursion such as discussed in the previous section, that produces numerical
results for the motorway model (4.1), numerical expressions for the following elements need
to be provided:
 • initial distribution
 • measurement update equations (see equation 4.6)
 • time extrapolation equations (see equation 4.9)
 • postprocessing equations

Up to this point, no assumptions have been made in this chapter about the form of the dis-
tributions of the random variables that constitute the motorway model (4.1). Only results
about the first and second moments of these random variables have been assumed, and are
summarized in the matrices Rt and Qt. Attempts to derive a recursion for the first two
moments of the subjective distribution of b(t) on this non-parametric basis are known not to
be successful (Anderson and Moore, 1979, Ljung and Söderström, 1983). However, if the ine-
quality constraints (4.1c) are disregarded, a recursion known as the Kalman filter can be
derived with which a ‘best linear minimum variance estimate’ (BMVLE) can be computed
(see section 3.3.4). The Kalman filter recursion relates to the mean and the covariance matrix
of the subjective distribution (4.2) if, in addition to the earlier assumptions, it is assumed that
b(1), w(t) and v(t) are multivariate normal (MVN) distributed (Anderson and Moore, 1979).

Although the Kalman filter has a number of advantages that were already discussed in sec-
tion 3.3.4, this estimation method also exhibits a number of shortcomings when applied to the
problem (4.1). All of these are related in one way or the other with the presence of the inequal-
ity constraints(4.1c).

The two main problems are:
 • Which values to specify for the parameters in the initial distribution, b(0) and Σb(0). It 

seems beneficial to specify large diagonal values of Σb(0), since this expresses a lack of 
information about b(0) and results in discarding the initial value b(0) as quickly as possi-
ble. On the other hand the initial variance is bounded above since the split parameters are 
bounded to the interval [0,1].

 • How to perform the postprocessing task, especially if the estimate generated by the Kalman 

argmax

b t( )

argmin

b
E b t( ) b−

2



4. A Bayesian Estimator of Turning Proportions

38

filter does not satisfy the inequality constraints.
In this section a few modifications to the Kalman filter, aimed at overcoming these problems,
are proposed that will result in a method producing estimates that deviate from those obtained
with the traditional Kalman filter.

Measurement update
It is well known that if both the prior distribution and the likelihood function in (4.4) are

Multivariate Normal (MVN) then the posterior distribution is also MVN. Moreover if v(t) sat-
isfies (4.1e) and is MVN then the expectation and covariance matrix characterising the poste-
rior distribution are given by:

b(t)+=b(t)-+Kt[y(t)-H(t)′b(t-1)+]+u(t)

Kt=Σt-1
+H(t)[H(t)′Σt-1

+H(t)+Rt]
−1

Σt
+=Σt

-− Σt
-H(t)[H(t)′Σt

-H(t)+Rt]
−1H(t)′Σt

- (4.13)

where b(t)- and Σt
- are the apriori mean and covariance, and b(t)+ and Σt

+ are the aposteriori
mean and covariance. This measurement update, supplemented with time extrapolation equa-
tions is known as the Kalman filter (Kalman, 1960).

The MVN distribution is however not a very suitable way to represent the knowledge about
split probabilities, as it does not reflect the inequality constraints (4.1c). Also, usage of (4.13)
could easily lead to negative estimates. This problem was already recognised in Nihan and
Davis (1987), where several heuristic algorithms were proposed to constrain the estimates to
the feasible region. A similar observation was made in the context of static OD-estimation by
Bell (Bell, 1991). A remedy for this problem presented in Van Der Zijpp and Hamerslag
(1994) is the usage of a Truncated Multivariate Normal (TMVN) distribution.

A truncated probability distribution is derived from its original by applying the truncation
operator, see Mood et al. (1963). The probability mass that was originally assigned to points
outside the truncation interval is distributed proportionally over the points inside this interval,
i.e. if f(x) is the distribution corresponding to a random variable X then the truncated distribu-
tion of X to the interval T is defined by:

f trunc(x)≡f(x).IT(x)/ (4.14)

where IT(x)=1 if x∈T, and IT(x)=0 elsewhere.
The use of a truncated distribution is indicated if one beliefs that a distribution provides a

reasonable model for a phenomenon inside the truncation interval while at the same time one
knows that the phenomenon can never take values outside this interval. From (4.14) it can be
seen that a truncated distribution is characterized by the same parameters as its original, or by
a subset of these parameters. For example, the truncated MVN distribution is characterized by
a vector and a matrix. Unlike the non-truncated MVN distribution these parameters do not cor-
respond directly to the mean and variance of the truncated distribution. To indicate this fact in
the notation we will mark the parameters, when used to characterise a TMVN distribution,
with a symbol ‘*’.

If in (4.6) the prior distribution is TMVN and the likelihood function is MVN, it can be
shown that the posterior distribution remains in the class of TMVN distributions. Moreover,
equation (4.13) still defines the parameters that characterise the posterior distribution (Van Der

f ξ( ) ξd
ξ T∈
∫
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Zijpp and Hamerslag, 1994).
This is illustrated graphically in figure 4.2. The posterior distribution that is obtained by

multiplying a normally distributed prior distribution and likelihood function and normalizing
the result is a normal distribution, see top graph. If the prior distribution is replaced with a
TMVN distribution then the shape of the resulting posterior distribution remains unchanged
inside the truncation interval, and hence is characterised by parameters identical to those
obtained when using an MVN distributed prior see bottom graph.

One remark concerns the usage of the equality constraints (4.1d). These constraints are
dealt with by considering them as perfect measurements, see Anderson and Moore (1979). See
section 4.4 for details of this approach in the present context.

Time extrapolation
In the above, only the measurement update has been discussed. In addition to this a time

extrapolation is needed to account for changes of the split probabilities over time such as
described by (4.1a). The distribution of the one-step prediction satisfies the general condition
given by (4.10). If both factors in the integral at the right hand side of (4.10) are MVN distri-
butions then the one-step prediction remains in the class of MVN distributions. The Kalman
filter equations can be used to compute the mean and the covariance matrix of the one-step
prediction. However, if the factor p[b(t)|Y(t)] corresponds to a TMVN distribution then no
useful analytical expression exists for the outcome.

Regardless of this fact, it was decided to use the Kalman time extrapolation equations unal-
tered, i.e.:

p[b(t+1)|Y(t)]=TMVN[ b(t+1)∗- , Σt+1
∗- ]|b(t+1)

with:

apriori
likelihood

aposteriori

apriori likelihood
aposteriori

b(t)+b(t)- b(t)

p[b(t)]

b∗(t)+b∗(t)-

p[b(t)]

b(t)

Figure 4.2: Bayesian update: aposteriori=likelihood.apriori/normalising constant. Top graph: 
prior distribution is MVN. Bottom graph: prior distribution is TMVN.
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b(t+1)∗-=b(t)∗++u(t)
Σt+1

∗-=Σt
∗++Qt (4.15)

Usage of this result introduces an error relative to the correct result that belongs to specifi-
cation (4.1a). However, the error will only be small as jointly u(t) and w(t) represents only a
small change in b(t).

Combined measurement update/time extrapolation
For future reference the recursion that combines the measurement update and time extrapo-

lation in one step is given below:

p[b(t)|Y(t)]=TMVN[ b(t)∗- , Σt
∗- ]|b(t)

b(t)∗+=b(t-1)∗++Kt[y(t)-H(t)′b(t-1)∗+]+u(t)

Kt=Σt-1
∗+H(t)[H(t)′Σt-1

∗+H(t)+Rt]
−1

Σt
∗+=Σt-1

∗+− Σt-1
∗+H(t)[H(t)′Σt-1

∗+H(t)+Rt]
−1H(t)′Σt-1

∗+ + Qt (4.16)

Initial distribution
As was mentioned earlier, the ideal noninformative prior for the problem of estimating split

proportions is the uniform distribution. This distribution expresses that every solution is
equally likely. Usage of the TMVN distribution makes it possible to define an initial distribu-
tion that is arbitrary close to the uniform distribution simply by defining Σ∗

b(0) as a diagonal
matrix with very large diagonal elements. Therefore the following initial distribution is cho-
sen, with η a sufficiently large scalar:

p[b(0)|∅]∼TMVN[ ½ , ηI ] (4.17)

Figure 4.3 illustrates how a truncated scalar normal distribution approaches a uniform dis-
tribution if the variance increases.

Postprocessing
A practical difficulty is the computation of the mean associated with a TMVN distribution.

No analytical solution exists for the multidimensional integral that needs to be solved, nor is
numerical integration an option due to CPU time constraints. However the mean may be
approximated by taking the average value of a large number of random numbers drawn from a
TMVN distribution. TMVN random numbers may be generated simply by generating MVN
random numbers and rejecting all outcomes that do not satisfy (4.1c). Details of this technique
are described in section 4.5.

4.4 Equality Constraints

A second type of constraints that apply to the state parameters are the equality constraints,
see equation (4.1d). In parameter optimization methods, such as constrained optimization,
these constraints are used to restrict the space of possible solutions.

For the purpose of imposing these constraints to a general class of estimation procedures
Nihan and Davis (1987) proposed a normalisation procedure. Since this procedure was meant
to act separately from the active parameter estimation method, it does not take advantage of
the knowledge of second moments that are available within the Bayesian procedure proposed
in this chapter.

As the equality constraints apply to linear combinations of the unknown split parameters,
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these constraints can be used as measurements in the Kalman filter. In literature, such meas-
urements are referred to as perfect observations because no noise is present on these observa-
tions. In matrix notation such a measurement looks like:

1=π ′.b(t), 1= , π ′= (4.18)

Anderson and Moore (1979) describe two ways to deal with this kind of observations. The
first way is to reduce the order of the filter by an order m (m denotes the number of equality
constraints). This can be done by a change of coordinate basis, similar to the one used while
calculating the solution to the constrained optimization problem. The second way is to pro-
ceed as with any measurement, using a zero matrix for the measurement noise matrix. In this
case the recursion (4.13) remains valid. For ease of implementation the latter method was
used in this thesis. We will refer to this procedure as the normalising measurement update.
The resulting distribution is called the normalized distribution.

The normalising measurement update can be combined with the regular measurement
update or can be performed separately, that is, before or after the regular measurement update.
In the following description we will assume that the normalising measurement update is per-
formed after the regular measurement update.

Therefore it is assumed that the filtered distribution at period t, characterized by b(t)∗+ and
Σt

∗+, is available. To indicate the difference between the normalized and non-normalized dis-
tribution, the parameters that characterize the normalized distribution are denoted with b(t)∗

and Σt
∗. Applying the standard Bayesian update parallel to equation (4.13) results in:

σ2= 0.125

σ2= 0.25

σ2= 0.5

Figure 4.3: Truncated normal distributions approach the uniform distribution if variance increases

b(t)

p[b(t)]

1
1
…
1

1 1…1,
1 1…1,

…
1 1…1,
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b(t)∗ = b(t)∗+ + Kt.[1-π ′ b(t)∗+]

Kt = Σt
∗+ π [π ′ Σt

∗+ π]-1

Σt
∗ = Σt

∗+ - Σt
∗+ π [π ′ Σt

∗+ π]-1 π ′ Σt
∗+ (4.19)

The covariance matrix Σt
∗ defined by these update equations is singular. However b(t)∗ and

Σt
∗ still define the density function of b(t) on the domain where b(t) satisfies the equality con-

straints. Outside this domain the density function is zero. The probability distribution of b(t) is
given by:

p[b(t)=b]= , 

where:
J1≡{b|F ′ b=1} (4.20)

The operator pinv(.) denotes the pseudo-inverse operator. The pseudo inverse replaces the
inverse operator as Σt

∗ is not invertible. See Anderson and Moore (1979) for details on this
issue. The quantity mn is height of the vector b, and J1 is the set of values for x that satisfy the
equality constraints (4.1d).

The resulting sequence of initializing, time extrapolations and measurement updates is
shown in figure 4.4.

4.5 Postprocessing

The recursive scheme shown in figure 4.4 defines subjective probability distributions from
which point estimates should be derived. In section (4.2), two possible ways are mentioned to
derive point estimates from subjective probability distributions: the subjective expectation and
the maximum aposteriori estimate.

Applied to the subjective probability distribution defined by (4.16) and (4.19) these esti-
mates are given by:

(a) bEXP(t)≡ b TMVN[ b(t)∗ , Σt
∗ ]|b db

and:

(b) b MAP(t)≡ ( TMVN[ b(t)∗ , Σt
∗ ]|b ) (4.21)

Although (4.21a) defines the preferred solution, evaluation of (4.21a) might be cumber-
some, as b is a high dimensional vector. The right hand side of (4.21b) can be shown to corre-
spond with a constrained quadratic minimization problem which is generally more easily to
solve. The possibilities to evaluate (4.21b) and (4.21a) are separately discussed in subsections
4.5.1 and 4.5.2 respectively.

1

C µ* Σ*,( ) 2πΣ* mn 2⁄
exp

1
2

b µ*−( ) ′pinv Σ*( ) b µ*−( )−( )I [0,1] b( )I J 1
b( )

b 0 1,[ ]∈ F′b 1=,
∫

argmax

b F ′b 1=,
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4.5.1 MAP estimate

Evaluating b MAP(t) in (4.21b) comes down to evaluating:

b MAP(t)=  ( b-b(t)∗ )′.pinv(Σt
∗).( b-b(t)∗ )

subject to:
0≤b≤1
π′ b=1 (4.22)

From (4.22) it can be concluded that the MAP estimate and the solution computed with the
fully constrained least squares (FCLS) procedure, see equation (3.13), are very similar. Both
procedures require the solution of a constrained quadratic minimization problem.

In fact if in system (4.1) the vector ut and matrix Qt are specified to be zero and the matrix
Rt is replaced with an identity matrix, while the discounting factor is set to one in the FCLS
method, both methods should in theory produce identical results. This is confirmed by the
experiments (see chapter 8). Therefore in applications to systems with a constant state, the
FCLS method is a special case of (4.22).

initial distribution

p[b(0)|∅]∼TMVN[ ½ , ηI ]

time extrapolation

measurement update

normalisation

p[ b(t)|Y(t) ]∼TMVN[ b(t)∗+ , Σt
∗+ ]

p[ b(t)|Y(t-1) ]∼TMVN[ b(t)∗- , Σt
∗- ]

p[ b(t)|Y(t) ]∼TMVN[ b(t)∗ , Σt
∗ ]

Figure 4.4: Structure of bayesian estimator for split probabilities, including initialization, time 
extrapolation, measurement update, normalization and postprocessing.

postprocessing
b(t)

argmax

b
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Due to the parallels between (4.22) and the FCLS problem, the numerical procedures that
are needed to compute the MAP estimator are identical to the procedures that were used for the
FCLS method. This implies that two alternative solution algorithms are available, both of
which have been described in appendix A:
 • The computationally efficient, but not always exact method referred to as iterative solving, 

see section A.5
 • The exact, but more time consuming method known as projected conjugate gradients, see 

section A.4.
In the chapters containing the results of experiments involving simulated and empirical data,
both method-variants are discussed.

4.5.2 Subjective expectation

Preferably the postprocessing consists of the calculation of the subjective expectation
E[b(t)|Y(t)], which implies that (4.21a) must be evaluated. However, this would require the
evaluation of an integral of (a part of) the error function associated with the MVN distribution,
for which no analytical solution exists. Numerical integration is no option either because b(t)
is a high dimensional vector.

In this section two possibilities are discussed to obtain approximations of (4.21a) without
having to evaluate the integral. The first possibility is to approximate (4.21a) with an expres-
sion that is easier to evaluate, this option is referred to as Approximated Mean (AM). The sec-
ond option is to sample a large number of random numbers from the distribution for which we
want to determine the expected value and use the average as an approximation for the mean.
This option is referred to as Randomized Mean (RM). Both options are discussed below.

Approximated mean
Since no analytical or numerical ways are known to evaluate the integral defined by

(4.21a), we replace (4.21a) with a simpler problem

bAPEXP(t)≡ b TMVN[ b(t)∗ , diag( Σt
∗ ) ]|b db (4.23)

where the diag(.) operator replaces a matrix with another matrix only containing the diagonal
elements of the original. Solving (4.23) instead of (4.21a) implies that the correlations and the
equality constraints are ignored. Expression (4.23) can be evaluated element by element, i.e.:

bAPEXP
k(t)≡ bk TMVN[ bk(t)

∗ , Σt
∗

kk ]|bk
dbk , k=1,2,…mn (4.24)

This integral is solved in two steps. In the first step the value normalization constant associ-
ated with the TMVN distribution is determined. In the second step the mean value is deter-
mined. Lemmas B.1 and B.2 in appendix B show that for a TMVN distribution with
parameters µ and σ2 the expectation is given by:

b 0 1,[ ]∈
∫

bk 0 1,[ ]∈
∫
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E[x]=  + µ,

with: C[µ,σ] =  +

and: (4.25)

The erf(.) operator is generally known as the error function. This integral can be evaluated
in a numerical way or by making use of approximations that are known in literature. One of
these approximations with an accuracy better than 2.5×10-5 is given by equation B.2.

The quality of (4.24) as an approximation depends on the correlations in the original distri-
bution, and the amount of probability mass contained in the truncated tails of the distribution,
see also example B.4 in appendix B.

The estimate bAPEXP(t) does not yet satisfy the equality constraints (4.1d). In order to
impose these constraints, a simple linear scaling operation was implemented.

A remarkable property of the method described above is that it produces approximations of
the subjective expectation within less CPU time then is needed to evaluate MAP estimates. As
the subjective expectation is preferred over the MAP, the approximated mean might very well
produce better results then MAP at a lower CPU cost.

Randomized mean
A technique that can be applied to obtain the mean of any distribution is simply to sample a

large set of random numbers from that distribution and using the average of this set as an
approximation for the mean. In order to apply this technique, two problems need to be solved:
-a- How can we generate random numbers for a TMVN distribution with parameters µ* 

and Σ*?
-b- How many of those random numbers need to be generated in order to get a reliable 

estimate for the mean?
In order to address issue -a- we consider the TMVN probability distribution with parame-

ters µ* and Σ* which is given by equation (4.20). In (4.20), the value of C(µ*,Σ*) follows
from the requirement that p[x] integrates to one, but can not be evaluated within acceptable
CPU time. The following lemma helps to generate random numbers from distribution (4.20)
without having to determine C(µ*,Σ*).

 Lemma 4.1: Let X1,X2,X3,… be a series of independent and identically distributed (iid) ran-
dom variables with distribution f(.), with:

>0 (4.26)

Let x1,x2,x3,…  denote the outcomes of X1,X2,X3,… , and let the random variable Y be
defined by:

Y≡Xi, where i=min{i|xi∈[0,1]} (4.27)

σ
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Then the distribution of Y is the truncated distribution of f(.).

Proof we need to proof the following relationship:

p[Y=y]= / I[0,1](y) (4.28)

As Y is a function of a number of random variables, Y is a random variable itself. Moreover, Y
cannot take on values outside the hypercube [0,1]. As definition (4.27) does not favour one
value of Y over the other, for any y∈[0,1] and any y*∈[0,1] with f(y*)>0, the following holds:

p[Y=y]/p[Y=y*]=f(y)/f(y*) (4.29)

and the probability distribution of Y should then satisfy:

p[Y=y]=(p[Y=y*]/f(y*)).f(y) I[0,1](y)=c.f(y) I[0,1](y) (4.30)

The value of c follows from normalizing (4.30), hence equations (4.28) and (4.30) are equiva-
lent. End of proof

In words, the lemma states that the truncated version of an arbitrary distribution can be
obtained by defining a random variable as the first outcome of the original distribution that is
an element of the truncation hypercube. Therefore it suffices to be able to generate random
numbers by sampling from the original distribution.

Applied to the problem of generating TMVN random numbers, this means that these num-
bers can be obtained by generating a large number of MVN random numbers and rejecting all
invalid samples. The latter are the numbers that are not an element of the truncation hyper-
cube. This leaves the issue of generating random numbers for an MVN distribution with
parameters µ* and Σ* to be solved.

The generally known approach to this is to find a matrix Q that satisfies:

Q.Q′ =Σ* (4.31)

and to define a random variable X by:

X≡µ*+Q.Y (4.32)

where Y is a vector of independent standard normal random variables. Now X is a random var-
iable with an MVN distribution, expected value µ* and covariance matrix Q.Q′=Σ*. The
decomposition (4.31) is known as a Choleski decomposition.

A precondition for a Choleski decomposition is that Σ* is positive definite. The above
approach can therefore not be applied directly since the matrix Σ* is not invertible, let alone
positive definite. The reason for the singularity of Σ* is that corresponding to each equality
constraint one element of X is defined as one minus a linear combination of the other elements
of X. If these ‘dependent’ elements are dropped from the random variable X, then the distribu-
tion of the resulting r.v., say X” has an MVN distribution with expected value µ” and covari-
ance matrix Σ”. The vector µ” and matrix Σ” can be obtained from µ* and Σ* by dropping the
elements, rows and columns corresponding to the dependent elements. Now Σ” is a positive
definite covariance matrix, and (4.32) can be applied to generate random values for the inde-
pendent elements of X. The dependent elements follow directly from the requirement to satisfy
the equality constraints.

In the above, a description was given, explaining how to obtain random numbers, sampled

f y( ) f x( ) xd
x [0,1]∈

∫
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from a TMVN distribution with parameters µ* and Σ*. The second question, issue -b-, is how
many of those random numbers are needed in order to get a reliable estimate of the mean. To
answer this question we use the property that sample means are statistics of which
 • the expected value matches the expectation from the distribution from which the samples 

were taken,
 • the variance is given by the variance of the sampling distribution divided by the number of 

samples.
The sample mean is an unbiased estimator for the true mean. By taking one hundred sam-

ples it is ensured that the sample variance for the individual elements of this estimator is
bound by the value 1/1200, where the value of  was used as an upper limit for the vari-
ance of a truncated normal distribution and equals the variance of a uniform distribution
defined on the interval [0,1]. The value 1/1200 is judged to be sufficiently low for the approx-
imation error not to contribute significantly to the total error of estimation.

Practical notes
Concerning the practical use of randomized mean a few notes are in order:
Firstly it is recommended to use the same sequence of standard normal random variables

each time the mean of a TMVN distribution is evaluated. This is to insure that the randomized
mean is a continuous function of µ* and Σ*.

Secondly, for some values of µ* and Σ* the fraction of non-rejected outcomes might be
very small, resulting in an unacceptably high number of trials needed to obtain a sufficient
number of valid samples. If the vector of split probabilities is large or the individual elements
of the vector have a low probability of being sampled in the interval [0,1] then the likelihood
of a successfully computed randomized mean decreases. In such cases a recursive strategy has
been applied. The problem of computing the randomized mean for the pair (µ*,Σ*) is decom-
posed in computing the randomized mean for the pairs (µ*1,Σ*1) and (µ*2,Σ*2), where:

[µ*1′ µ*2′]=µ*′ (4.33)

and the approximation used for Σ* is:

≈Σ* (4.34)

This implies that the correlations between the two pairs are ignored. Because of the equal-
ity constraints, it is necessary to keep the elements corresponding to identical origins together
in this decomposition. This recursion continues until a solution is successfully found, or until
the vector can no longer be divided. In the latter case, where the randomized mean can not
even be properly computed for the splits associated with a single origin, the approximated
mean is used. To recognize these cases before having wasted the CPU time on trying to gener-
ate a sufficient number of valid samples, it is advised to test on the ratio of the valid samples
and the invalid samples during the process, and stop the process as soon as this ratio is below
a certain threshold.

4.6 Conclusions

The practical implications of the theory put forward in this chapter for discrete time models
of the form (4.1) with slowly varying, inequality constrained states, can be summarized as fol-

1 12⁄

Σ1
* 0

0 Σ2
*
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lows: As far as the recursive updating process is concerned, the presence of the inequality con-
straints (4.1c) should be ignored and the standard Kalman equations (4.16) and (4.19) should
be applied. The presence of the inequality constraints should be used in a special postprocess-
ing step.

The above statement gives a simple recipe that easily can be applied in many practical situ-
ations. Due to the postprocessing step, the actual estimates will deviate from those obtained
with the traditional Kalman filter. The parameters that are recursively being updated character-
ize a truncated multivariate normal distribution. Therefore these parameters do not coincide
with the true mean and maximum aposteriori estimates, as is the case in the traditional Kalman
filter.

The maximum aposteriori estimate can either be evaluated exactly, using the earlier
described Projected Conjugated Gradient (PCG) method, or can be approximated via the
method of Iterative Solving (IS), see appendix A. The subjective expectation can not be evalu-
ated exactly, but can be approximated in a CPU efficient manner with a method known as
approximated mean, or can be approximated even more accurate, but at the cost of considera-
ble more CPU time with a method known as randomized mean.
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5. Spatial Correlations Between Link Volume Observations
5.1 Introduction

This chapter is concerned with the statistical analysis of the random variable defined by:

v(t)=y(t)-H′(t)b(t) (5.1)

where y(t) is the vector of traffic counts observed on internal or exit links, H(t) is the measure-
ment matrix defined in (2.22), and b(t) is the vector of split probabilities.

The random variable v(t) was introduced as the measurement error in the measurement
equation (2.23). Given q(t) and b(t), its properties follow from the assumptions in the motor-
way model. Section 5.2 contains a discussion on the terms contributing to v(t). We will
assume that the vector q(t) is observed. The vector y(t) might be observed also, but should not
be used to derive properties of v(t). The vector of the split probabilities b(t) is not known.
Nevertheless, we will need this vector to determine the properties of v(t). Therefore, we will
subsequently assume that:
1. only time aggregated information is available (section 5.3),
2. b(t) equals its most up to date estimate (section 5.4),

or:
3. b(t) is sampled from a distribution of which the mean equals the most up to date esti-

mate, and the covariance matrix equals the covariance matrix associated with the sub-
jective probability distribution p[b(t)|y(1)…y(t)] (section 5.5).

Ways to derive a subjective probability distribution for b(t) were discussed in chapter 4. In
subsection 2.4.2 it was already argued that it will not be possible to derive any useful analyti-
cal expression for the probability density of v(t). Instead we confine ourselves to deriving
expressions for its expectation and covariance matrix. The covariance matrix, or its approxi-
mation will be denoted with Rt. The expectation of v(t) will be zero for both case 1, 2 and 3, as
according to (2.21) it holds for any b(t) that:

 E[y(t)|b(t),q(t)]=H′(t)b(t) (5.2)

Mathematical preliminaries to the derivations in sections 5.4, and 5.5 can be found in
appendix C.
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5.2 Interpreting the observations as linear measurements

Equation (2.23) was used in chapters 3 and 4 as a point of departure to estimate the split
probabilities b(t) from the observations y(t). This equation suggests that a vector of linear com-
binations of split parameters is observed, see figure 5.1. In reality however, the observations
consist of the outcomes of random processes driven by the split probabilities, see figure 5.2.
This clearly is a change of interpretation, and the question is if for the sake of the estimation of
b(t), the model in figure 5.2 can be replaced with the model from figure 5.1. The answer is
affirmative. Both systems show equal behaviour when supplied with equal split proportions.
The reverse also applies; if the split proportions are estimated from the observations under
assumption of the linear model (2.23) then these estimates also apply to the real system. How-
ever, a requirement is that a realistic probability distribution is specified for the random varia-
ble v(t).

The use of the linear model (2.23) has the advantage that standard estimation techniques are
available to estimate the model parameters. One of these techniques is the Kalman filter, see
section 3.3.4. A precondition to apply this technique is knowledge of the first two moments of
the measurement error v(t), i.e. its expectation and its covariance matrix. This measurement
error can be decomposed as follows:

v(t) = (y(t) − (t)) + ( (t)- ′(t)b(t)) + ( ′(t)-H′(t))b(t) (5.3)

Interpreting the above equation reveals that the random variable v(t) accounts for three
independent sources of error:
 • The counting error. This is the difference:

v1(t)= y(t) −  (t) (5.4)

In the motorway model this error was denoted as s(t), see figure 2.3.

split probabilities
b(t)

entry volumes
(t)q̃

EE-flow volumes
f(t)

multiplication

Figure 5.1: Destination choice modelled by deterministic selection, followed by addition of a 
measurement error.

×

measurement error
v(t) ∑

addition

ỹ ỹ H̃ H̃

ỹ
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split probabilities
b(t)

idealized entry volumes
(t)q̃

EE-flow volumes
f(t)

independent random trials

Figure 5.2: Destination choice modelled by random selection

entry volume obs.
q(t)

observation error
s(t) ∑

addition
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addition
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link volume obs.
y(t)



5. Spatial Correlations Between Link Volume Observations

52

 • The random choice error. This is the difference between the expected and the idealized link 
volumes, i.e.:

v2(t)= (t)- ′(t)b(t) (5.5)

Such a discrepancy exists since the actual shares of chosen destinations within one period 
are not exactly equal to the split probabilities. This component contributes slightly to the 
(negative) spatial correlation of the elements of v(t). If by a process of random selection a 
collection of objects is distributed over a number of disjunct classes then the random varia-
bles defined by the number of each class are jointly distributed with a multinomial distribu-
tion, see Lehmann (1983).

 • The mis-specification error. This error is due to the fact that the matrix H′(t) contains 
observed rather than idealized entry values, and equals:

v3(t)=( ′(t)-H′(t))b(t). (5.6)

This error causes a strong (positive) spatial correlation since errors in entry volume obser-
vations are attributed to errors on link observation level. An overestimation of an entry vol-
ume is attributed to all involved link level errors.

The covariance matrix Rt of v(t)=v1(t)+v2(t)+v3(t) clearly depends on b(t). As this vector is
not exactly known, the matrix Rt is approximated. The advantage of a good approximation is
twofold. Firstly, it is hoped that a better approximation of Rt will result in a better point esti-
mate of b(t). Secondly, with a better approximation for Rt, combined with the use of certain
statistical techniques, it will be possible to quantify the reliability of the estimate more accu-
rately.

5.3 The constant covariance matrix

In this section the time-independent approximation of the covariance of v(t) is considered.
A straight forward way to obtain a covariance matrix for the measurement error, is simply to
observe one. If for a number of periods the split proportions denoted with {bob(1), bob(2),…
bob(t)} are observed then an approximation of Rt would be:

Rt ≅ [y(p)−H ′ (p)bob(p)][y(p)−H′(p)bob(p)]′ (5.7)

This can be done if the true matrix is observed from toll tickets, see e.g. Ashok and Ben-
Akiva (1993).

Most publications are not clear about the covariance matrix that is assumed for the meas-
urement error. For example Cremer and Keller (1987) only mention that a constant matrix was
assumed. Nihan and Davis (1987) are more explicit, and put into words the method that is pre-
sumably used by most researchers. They report that a diagonal matrix is used which is defined
by the identity matrix multiplied by a factor. This factor is treated as a design parameter and is
fixed by some experimenting.

In this thesis two ways of defining a constant covariance are tested, which are:
1. use the identity matrix as a covariance matrix, i.e.

ỹ H̃

H̃

1
t

p 1=

t

∑
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Rt=I (5.8)

This choice of matrix is referred to as ‘Unity’ (U). Testing the method that was proposed 
in chapter 4 in combination with this matrix, and using the ‘maximum aposteriori’ 
(MAP) postprocessing option results in a method with similar properties as the FCLS 
method (3.13). See section 4.5.1 for a further discussion on this subject.

2. use a diagonal matrix of which the elements are chosen proportional to the average 
observed values, i.e.:

Rt=diag( y ) (5.9)

where y is the average of {y(1)…y(t)}, and diag(.) is the diag operator defined in appen-
dix C, equation (C.9). The choice of this matrix is referred to as ‘Average Link Flow’ 
(ALF).

5.4 The point estimate based covariance matrix

A time dependent approximation of the covariance of v(t) is obtained by computing:

Rt = E[ v(t) v′(t) |b(t)=b(t)]
=E[ [y(t)-H′(t)b(t)][y(t)-H′(t)b(t)]′ |b(t)=b(t)] (5.10)

In this approximation b(t) is replaced with a fixed value for which its most up to date esti-
mate b(t) is used. The more accurate the approximation is, the more reliable is the resulting
covariance matrix. In the rest of this section the notation is compressed by dropping the time
index. All variables refer to time period t.

The r.h.s. of (5.10) can be evaluated using of lemma C.1. According to this lemma the fol-
lowing holds:

E[ v v′ |b=b]=E [ E[ v v′ |b=b,q= ] ] (5.11)

The covariance matrix defined in (5.10) can then be derived in the following two steps:
1. compute E[ v v′ |b=b,q= ]
2. compute E [ E[ v v′ |b=b,q= ] ]
In other words: first the idealized entry volumes, , are assumed known (step 1), and subse-
quently the expectation with respect to the value  is taken (step 2).

Step 1
If  is known then the following result can be derived.

E[ (y-H′b) (y-H′b)′ |b=b,q= ]
=E[ y y′ |b, ] - E[ y|b, ](H′b)′ - (H′b)E[ y′ |b, ] + (H′b)(H′b)′

=cov[ y,y |b, ] + E[ y|b, ]E[ y′ |b, ] - E[ y|b, ](H′b)′ - (H′b)E[ y′ |b, ] + (H′b)(H′b)′
=cov[ y,y |b, ] + ( ′b-H′b )( ′b-H′b )′ (5.12)

where  denotes a matrix that equals H, but with all elements of q replaced with their corre-
sponding elements in , i.e.:

x(i,j),k(t) = τijk i(t)
i=1,…m, j=1,…n, k=1,…l

Consider the first r.h.s. term of (5.12). The computation of cov[ y,y |b, ] again takes a

q̃ q̃

q̃

q̃ q̃
q̃

q̃
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q̃
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number of substeps:
1.1 Compute cov[f,f |b, ]. This matrix follows from the assumption of the multinomial dis-

tribution of the flows, given in (2.12).
1.2 Compute cov[ , |b, ]. In this step the fact that all elements of  are linear combinations 

of f, i.e. =U ′ f, can be used.
1.3 Compute cov[y,y|b, ]. This step is straightforward since y equals  increased with an 

independent random component.

Substep 1.1
Equation (2.12) defines a multinomial distribution that can be considered as the multivari-

ate extension of the binomial distribution. On a scalar level the following first and second
moments follow from (2.12):

E[fij|b, ] = i bij

E[(fij-E(fij))
2|b, ] = i bij(1-bij)

E[(fij-E(fij))(fik-E(fik))|b, ] = - i bij bik , j≠k
E[(fij-E(fij))(fhk-E(fhk))|b, ] = 0, i≠h (5.13)

Using the kronecker operator δ, defined by {δ:δjk=1 if j=k and zero otherwise}, equation
(5.13) can be written as:

E[(fij-E(fij))(fhk-E(fhk))|b, ] = δih( δjk i bij- i bij bik )
i=1,2,…m, j=1,2,…n, h=1,2,…m, k=1,2,…n (5.14)

Equation (5.14) defines a block diagonal matrix. This is in accordance with the fact that no
interdependencies exist between flows that originate from different entrances. The structure of
the matrix is illustrated in figure 5.3. The blocks Bi in this figure only depend on the split pro-
portions associated with entry i.

For a more efficient notation it is required that (5.14) is summarized in matrix notation.
Although (5.14) is linear in , it is not possible to write (5.14) as a simple matrix multiplica-
tion. However with the aid of some notational conventions involving the use of the diag(.)
operator and a repeating column matrix, π (see sections C.2 and C.3 in appendix C), we may
replace (5.14) with:

cov[f,f|b, ]=diag(π )(diag(b)-diag(b)ππ′diag(b)) (5.15)

Substep 1.2
Definition (1.6) of the idealized link flows can be expressed in matrix notation with:

q̃

ỹ ỹ q̃ ỹ
ỹ

q̃ ỹ

q̃ q̃

q̃ q̃
q̃ q̃

q̃

q̃ q̃ q̃

q̃1B1

q̃2B2

…

q̃mBm

Figure 5.3: Structure of flow covariance matrix
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=U ′f (5.16)

where U is a matrix of height mn and with l, of which the nonzero elements are given by:

Ux(i,j),k = τijk (5.17)

for i=1,…m, j=1,…n, k=1,…l, and x(i,j) representing the position of fij in the vector f. From a
property of the covariance operator given in lemma C.4, it follows that:

cov[ , |b, ]=U ′ cov[f,f|b, ]U (5.18)

The moments of { |b,q˜} are obtained by combining (5.18) and (5.15):

cov[ , |b,q˜]=U ′diag(π ) (diag(b)-diag(b)ππ′diag(b)′) U (5.19)

This concludes Step 1.

Substep 1.3
If also the physical measurement errors, of which the properties are given by (2.11), are

taken into account, the following moments can be derived for {y|b, }:

cov[y,y|b, ]=U ′ diag(π ) (diag(b)-diag(b)ππ′diag(b)′) U + Θ (5.20)

-end of step substep 1.3-
Substituting result (5.20) in (5.12) gives:

E[ v v′ |b=b,q= ]=
U ′ diag(π ) (diag(b)-diag(b)ππ′diag(b)′) U + Θ

+( ′b-H′b )( ′b-H′b )′ (5.21)

Step 2
The second step is to eliminate the idealized entry volume  from equation (5.21) by eval-

uating (5.11). Information about  is obtained via entry volume observations q. As a result of
equations (2.9) and (2.11) in the motorway model we may use the following expected value
and covariance for :

E[ |q]=q
E[( -q)′( -q)]=Φ (5.22)

When the expectation of (5.21) with respect to  is evaluated, it is needed to expand all terms
that depend on . The dependency of  on  can be captured in the following matrix nota-
tion:

′=U ′ diag(π )
likewise:

H′=U ′ diag(πq) (5.23)

Therefore the following rewrite of (5.21) is permitted:

E[ v v′ |b=b,q= ]=U ′diag(π ) (diag(b)-diag(b)ππ′diag(b)′) U + Θ
+U ′ diag( π( -q) )b b'diag( π( -q) )U (5.24)

Since above equation is a polynomial in , with no terms of a degree exceeding 2, it should
be possible to express (5.10) in terms of E[ ] and cov[ , ]. We have however some difficulty
doing this since  appears as an operand of the diag(.) operator. Therefore a result that follows
from lemma C.5 is substituted in (5.24):

ỹ
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diag(π )b=diag(b)π (5.25)

This results in the following expression for the matrix Rt as defined in (5.10):

Rt = E[ v(t) v(t)′ |b(t)=b]= U ′[ Qt(Bt-Btππ′Bt′)+BtπΦπ′Bt ]U + Θ (5.26)

where Qt=diag(πq(t)) and Bt=diag(b(t)). The expression [ Qt(Bt-Btππ′Bt′)+BtπΦπ′Bt ] can be
shown be equal to cov[f(t),f(t)|b(t)=b(t)].

Interpretation of result (5.26)
Equation (5.26) is a generalisation of the approximation of the covariance matrix that was

proposed in Van Der Zijpp and Hamerslag (1994b). In fact it simplifies to the latter result if Φ
is assumed to be a diagonal matrix with the values σq

2 on the diagonal, and the matrix Θ is
assumed to be zero. In this case (5.26) may be written as:

cov[v,v|b]=U ′ cov[f,f|b]U
cov[fij,fhk|b] = δih[ δjk qi bij +(σq

2- qi )bij bik ]
i=1,2,…m, j=1,2,…n, h=1,2,…m, k=1,2,…n (5.27)

The practical value of approximation (5.26) depends on the accuracy of the estimate b. A
potential pitfall is that a circularity exist, consisting of split parameter estimates influencing
covariance matrices which in turn influence split parameter estimates for the next period (see
chapter 4). In such a way a self amplifying process might lead to diverging estimates. Ideally,
some sort of stability analysis should clarify this issue. This analysis is however expected to be
highly complex, and has not been pursued. Instead (5.26) has been compared with other
choices of covariance matrices in a number of experiments with simulated data, see chapter 8.

 In the experiments the covariance matrix that follows from (5.26) will be referred to as
‘Point Estimate Based Approximation’ (PEBA) of the covariance matrix. In the experiments
we will not only test the usage of the PEBA matrix, but also test the usage of a ‘Diagonalized
Point Estimate Based Approximation’ (DPEBA). The diagonal elements of the DPEBA matrix
are equal to those of PEBA matrix but the non-diagonal elements are zero. The idea behind the
usage of the DPEBA matrix is that assumptions of the motorway model are only used to gain
insight into the size of the measurement errors, not into their spatial correlations.

5.5 The distribution based covariance matrix

The result derived in the previous section is based on a fixed value of b(t) for which the
most recent estimate was substituted. This result can be refined by using a probability distribu-
tion of b(t). Instead of evaluating (5.10) the objective now is to evaluate:

Rt = E[ v(t) v′(t) ] (5.28)

As a point of departure for the evaluation of (5.10), the expected value and covariance matrix
of b(t) are used, denoted by b(t) and Σb(t) respectively. It is assumed that b(t) and Σb(t) satisfy
the constraints that follow from the fact that b(t) is bounded to the hypercube [0,1]. It should
be noted that if these constraints are not adhered to, this might lead to unrealistic results, like a
matrix of Rt that is not positive definite. The matrix Rt as defined in (5.10) will be referred to
as the ‘Distribution Based Approximation’ (DBA).

Applying lemma C.1 again implies:

E[ v v′ ]=Eb[ E[ v v′ |b ] ] (5.29)

q̃ q̃
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To the steps 1 and 2 presented in the previous section, a third step is now added:

3. compute Eb[ E[ v v′ |b ] ]

A description of this step is given in this section.

Step 3
Substituting the earlier derived result (5.26) in (5.29) implies:

E[ v v′ ]=Eb[ U ′ diag(πq)(diag(b)-diag(b)ππ′diag(b)) U+Θ+ U ′ diag(b)πΦ π′diag(b)U ]
(5.30)

The Eb operator, applied to the terms that are linear in b, can be evaluated directly. This
gives (maintaining the order of the terms in (5.30) ):

E[ v v′ ] =U ′diag(πq)diag(b)U + Θ
-U ′ Eb[ diag(b)diag(πq)ππ′diag(b) ]U

+U ′Eb[ diag(b)πΦ π′diag(b) ]U (5.31)

In the second and third line of expression (5.31) the expected value is taken of a matrix of
which the elements are polynomials in b of degree 2. Therefore it should be possible to
express (5.31) in terms of b and Σb. Just like in section 5.4 the vector, with respect to which a
covariance matrix is to be computed, appears as an argument in the diag(.) operator. This time
lemma (C.7) solves the problem. According to this lemma it holds that:

diag(b)diag(πq)ππ′diag(b)=(bb′)⊗(diag(πq)ππ′)
and:

diag(b)πΦ π′diag(b)=(bb′)⊗(πΦ π′) (5.32)

where ‘⊗’ represents the array multiplication (see appendix C for the definition). Substituting
these inequalities in (5.31) leads to:

E[ v v′ ] =U ′diag(πq)diag(b)U + Θ
-U ′ Eb[ (bb′)⊗(diag(πq)ππ′) ]U

+U ′ Eb[ (bb′)⊗(πΦπ′) ]U (5.33)

The final step is to apply lemma C.3, replacing Eb[bb′] with Σb+b b'. This leads to:

E[ v v′ ] =U ′diag(πq)diag(b)U + Θ
-U ′ ((Σb+b b')⊗(diag(πq)ππ′))U

+U ′ ((Σb+b b')⊗(πΦπ′))U (5.34)

To make this result more comparable with earlier results, the transformation (5.32) is
reversed, by applying lemma (C.7) a second time. This leads to:

(b b')⊗(diag(πq)ππ′))=diag(b)diag(πq)ππ′diag(b)
and:

(b b')⊗(πΦπ′)=diag(b)(πΦπ′)diag(b) (5.35)

Substitution of this result in (5.31), results after some manipulation in the following
approximation of Rt:
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Rt ≅ E[ v v′ ] =U ′ diag(πq)( diag(b) - diag(b)ππ′diag(b) )U+ Θ
+U ′diag(b)(πΦπ′)diag(b)U

-U ′diag(πq) (Σb⊗(ππ′))U + U ′ (Σb⊗(πΦπ′))U (5.36)

The following equation expresses this result in a format comparable with (5.26):

Rt = E[ v(t) v(t)′]= U ′ [ Qt(Bt-Btππ′Bt′)+BtπΦπ′Bt -Qt (Σb⊗(ππ′))+Σb⊗(πΦπ′) ]U + Θ
(5.37)

where Qt=diag(πq(t)) and Bt=diag(b(t)). With this result the required approximation of Rt is
completely defined in terms of b and Σb.

Interpretation of result (5.36)
In (5.36), the terms not involving Σb are identical to (5.26). Therefore if the distribution of b

contracts to a single point resulting in the covariance matrix Σb becoming zero, both results
will be identical. Again the results can be presented in a more legible format if Φ is assumed to
be a diagonal matrix with the values σq

2 on the diagonal. Ιn such case it holds that:

cov[v,v]=U ′P U+Θ,
Px(i,j),x(h,k)=δih(δjk qi bij- qi bij bik+σq

2bij bik)+cov[bij,bhk](-qiδih+σq
2δih)

=δih[δjk qi bij+(σq
2- qi )( bij bik+cov[bij,bhk])]

i=1,2,…m, j=1,2,…n, h=1,2,…m, k=1,2,…n (5.38)

If b and Σb satisfy the requirements that follow from b(t) being constrained to the hyper-
cube [0,1] the r.h.s. of (5.36) represents the covariance matrix of a random variable and hence
represents a positive definite matrix. The possibilities to apply result (5.36) in a practical con-
text are more limited than for result (5.26) as the matrix Σb, or its approximation, needs to be
available. When an approximation of Σb is used, it should be checked that the r.h.s. of (5.36)
remains positive definite.

5.6 Conclusions

This chapter considers the covariance matrix for the measurement error in (2.23). It was
shown to be possible to derive such a matrix using the assumptions in the motorway model.
However the matrix depends on the unknown split probabilities and therefore can not be
directly used in an estimation procedure. Therefore three categories of approximations have
been considered. These are time invariant approximations, point estimate based approxima-
tions (PEBA) and distribution based approximations (DBA).
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6. Serial Correlations of Split Proportions
6.1 Introduction

Taking the state equation (2.7) as a point of departure, this chapter is concerned with the
properties of the drift variables w(t) and the systematic changes in the split probabilities u(t).
These properties are an important part of the system specification, as they determine the
weight that is put on older observations, and the direction in which the estimates of the split
probabilities tend to move. Little is known about the best specification of these properties, as
direct observations of EE-tables are not available in general. This chapter contains two results
on specifying the properties of u(t) and w(t).

The first result concerns the variance of w(t). Assuming that uij(t) is chosen in such a way
that E[wij(t)]=0, the rate of change in the split proportions is expressed with E[wij(t)

2]. By
analysing a database of vehicle trips, which was made available by the authorities responsible
for a toll road in the south of France, an appropriate value for E[wij(t)

2] was determined for
one particular network. The findings are reported in section 6.2.

The second result concerns the variable that denotes the default change in the split proba-
bilities, u(t). This variable is only non-zero if external information indicates that the split
probabilities are likely to move in a certain direction. Usually such information is derived
from historic data. It is envisaged that a number of day profiles may be distinguished, e.g.
weekdays, weekends, holidays, etc., and that for each profile the historical averages of the
split proportions, represented by bp(t), are stored. The value of u(t) can then be derived from
this historical average. The profiles, bp(t), may be adapted on a daily basis. An adaptation
mechanism and the way this historical average influences the estimate of b(t) are discussed in
section 6.3.

6.2 Empirical data on the rate of change in split proportions

The common state propagation assumptions result in using (2.7) in combination with:

u(t)=0
E[w(t)]=0

cov[w(t),w(p)]=σ2.I.δtp (6.1)

where σ2 is chosen as a design parameter, see e.g. Nihan and Davis (1987), Cremer and Kel-
ler (1987), Van Der Zijpp and Hamerslag (1994b). Figure 6.1 shows the one hour averaged
split proportions plotted against the corresponding values for the previous hour. The data have
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Figure 6.1: One hour-averaged split-ratios on the tollroad ‘route du soleil’ in France, plotted 
against the split-ratios during the previous hour of departure, measured from 6.00-18.00 
on tuesday, August 4, 1992

0 1
0

1

split0406

sp
lit

0
40

7

0 1
0

1

split0407

sp
lit

0
40

8

0 1
0

1

split0408

sp
lit

0
40

9

0 10

1

split0409

sp
lit

04
1

0

0 10

1

split0410

sp
lit

04
1

1

0 10

1

split0411

sp
lit

04
1

2

0 10

1

split0412

sp
lit

04
13

0 10

1

split0413

sp
lit

04
14

0 10

1

split0414

sp
lit

04
15

0 1
0

1

split0415

sp
lit

0
41

6

0 1
0

1

split04 06

sp
lit

0
41

7

0 1
0

1

split0417

sp
lit

0
41

8

hour

date



6.3 Default model

61

been derived from toll tickets that were issued to motorists on the ‘route du soleil’ in France.
Analysing these trips during a month on this route resulted in figure 6.2 that shows the rate of
change as a function of time of day (only trips with a departure time between 7:00 and 18:00
were analysed). The rate of change is expressed in terms of the mean squared error, MSV(t),
i.e.:

MSV(t)= (6.2)

where  represents the observed split proportions. These data provide some guidance in
choosing an appropriate value for σ2 in (6.1). The averaged value over all OD-pairs for
MSV(t) is 0.0013 per hour. This value is based on the actual split proportions and hence
includes random variation due to the uncoordinated choices of motorists, as well as the default
change u(t) in (2.7). This value should therefore be viewed as an upper bound for the variation
in the split probabilities.

6.3 Default model

In the previous section the size of the random variation in the split probabilities was con-
sidered, while this section considers the systematic or default component, u(t), in this varia-
tion. It is envisaged that this component can be derived from historic data. For this purpose we
introduce a notation where, in addition to an index for the time period, an index for the day is
also included. Let bk(t) denote the vector of split probabilities in period t on day k.

Up to this point the assumption of slowly varying split probabilities was only applied to the
evolution of the split probabilities within a single day, and was summarized in the following
equation:

bk(t+1)=bk(t)+w(t) (6.3)
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Figure 6.2: Average squared variation in actual split proportion over the month August 1992,
Average squared variation in split proportion per hour: 0.001256
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This evolutionary behaviour is illustrated in figure 6.3, and is referred to as the vertical ran-
dom walk model. However, an assumption of a horizontal random walk is also plausible:

bk+1(t)=bk(t)+hk(t) (6.4)

Equation (6.4) expresses the fact that traffic has a daily repeating pattern. Support for this
hypothesis can again be derived from the tollticket data of the French tollroad. Like figure 6.1,
figure 6.4 shows the one hour averaged split proportions, averaged over one hour, this time
plotted against the corresponding values for the previous days. The plots show correlations
between split proportions on consecutive days that are near to one.

 In (6.4), the variation of hk(t) decreases if the period length increases, since an increased
period length makes the model less susceptible for variations in departure time choice. There-
fore (6.4) is usually associated with static methods, see for example Maher (1983). The fol-
lowing model combines assumptions (6.3) and (6.4) and will be called the default model:

bk+1(t)=bp,k(t)+x(t)
x(t+1)=α.x(t)+ε(t)

0≤α≤1 (6.5)

bk(1)

bk(2)

bk(3)

bk(…)

bk+1(1)

bk+1(2)

bk+1(3)

bk+1(…)

bk+q(1)

bk+q(2)

bk+q(3)

bk+q(…)

bp(1)

bp(2)

bp(3)

bp(…)

day k day k+1 day k+q

Figure 6.3: Vertical and horizontal random walk model
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Figure 6.4: One hour-averaged split-ratios on the tollroad ‘route du soleil’, plotted against split-
ratios during the corresponding hour of departure on the previous day, measured from 
6.00-18.00 on monday and tuesday, August 3 and 4, 1992
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with:
bk(t): vector of split proportions in period t on day k
bp,k(t):  profile for day k, based on historic data
x(t): displacement
α: discounting factor for displacement
ε(t): zero mean random noise 

Equation (6.5) expresses that bk(t) is a process that randomly varies around the historic
averages bp,k(t). A similar model has been proposed by Ashok and Ben-Akiva (1993) in a
slightly different context. The vector bp,k-1 represent a profile for the split probabilities
updated until and including day k-1. This profile is compiled from all available historic data
and may be adapted on a daily basis, for example by storing the moving average of the esti-
mates bk(t):

bp,k(t)=(1-β)bp,k-1(t)+βbk(t)
0≤β≤1 (6.6)

An appropriate value for β should be chosen on the basis of experiments with real data.
It seems natural to work with multiple profiles, and to base the decision to assign a separate

profile to a category of days on practical grounds, e.g. is it possible to identify a certain type of
day in advance?, can characteristic traffic patterns be observed on this day?, are sufficient his-
torical data available?, etc.

The variable x(t) denotes the displacement of the split probabilities relative to the historic
average. The expected value of the one step prediction of this variable is located between its
current value and zero, depending on the value of a discounting factor α that, again, should be
chosen on the basis of experiments with real data. If this factor is given a value smaller than
one then the predictions based on state equation (6.5) will tend to move closer to the historic
average with the increase of the prediction horizon.

Equation (6.5) has two extreme cases:
 • α=0. In this case there is no serial correlation between the displacements x(t)
 • α=1. In this case there is no force that drives back the displacements x(t).

In equation (6.5), x(t) rather than b(t) is the variable that is to be estimated. In order to fit
(6.5) into the existing framework (2.7), a number of manipulations are performed. According
to (2.7), the following holds:

b(t+1)-b(t)=u(t)+w(t) (6.7)

On the other hand, according to (6.5) the following holds:

b(t+1)-b(t)=bp,k(t+1)+x(t+1)-bp,k(t)-x(t)
=bp,k(t+1)-bp,k(t)+ε(t)+(α-1)x(t)

=bp,k(t+1)-bp,k(t)+(α-1)[b(t)-bp,k(t)]+ε(t) (6.8)

By matching the systematic and the random components of (6.7) and (6.8) it follows that:

u(t)≡bp,k(t+1)-bp,k(t)-(1−α)[b(t)-bp,k(t)]
w(t)≡ε(t) (6.9)

Jointly equations (2.7), and (6.9) define a straightforwardly applicable time propagation
model that takes into account historic experience. To illustrate how the use of these equations
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works out, substitute (6.9) in (2.7). The result can then be rearranged as follows:

b(t+1)=b(t)+bp,k(t+1)-bp,k(t)-(1−α)[b(t)-bp,k(t)]+w(t)
=αb(t)+bp,k(t+1)-αbp,k(t)+w(t)

=α[b(t)+bp,k(t+1)-bp,k(t)]+(1-α)bp,k(t+1)+w(t) (6.10)

The one step prediction is hence a weighted average of an extrapolation of the current esti-
mate and the historical mean. With parameter α one can tune how fast the prediction will be
pulled back to the historical value.

6.4 Conclusions

Empirical data reveal a serial correlation between split-ratios that is near to one. This corre-
lation is observed both between split ratios referring to consecutive time periods within a sin-
gle day (see figure 6.3), and between split ratios referring to a single time period on different
days (see figure 6.4).

The simultaneous usage of both properties leads to equation (6.10). This novel expression
combines usage of the assumption of slowly varying split probabilities with usage of histori-
cal data.
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7. Combined Data Sources
7.1 Introduction

Up to this point we have exclusively dealt with dynamic EE-flow estimation from time
series of traffic counts.Traffic counts represent also the most widely available class of data
that can be obtained using automated data collection techniques. However, it is expected that
in the near future the information generated by automated observation techniques will no
longer be limited to volume counts only but will also comprise trajectory information. Trajec-
tory information relates to the usage of partial paths, i.e. sequences of two or more adjacent
links.

The availability of this type of information may stem from new devices such as automated
license plate readers and transponders, or as a side effect of new products such as in vehicle
route guidance. These collection techniques will be discussed in section 8.4. In this chapter it
will be shown how the processing of a combination of trajectory information and link vol-
umes fits in the Bayesian EE-estimation framework presented in chapter 4. As an example of
the use of trajectory information, the processing of license plate surveys will be considered.
Extensions to other sources of trajectory information are discussed in section 7.4.

7.2 Historical overview of the analysis of registration plate data

It has long since been recognized that license plates can be a valuable source of (static)
OD-information (Kryger and Ottesen, 1956, Brenner et al., 1957). Until recently, the record-
ing of license plate registrations had to be done manually. To economize on manpower as well
to minimize errors of (the manual) recording it has become usual to only record a part of the
license plate, for example a combination of the last three digits or letters. Such a survey is
known as a partial license plate survey.

A problem that occurs if only a part of the license plate is recorded is that of the spurious
matches which occur if two different vehicles have identical partial registrations. The extent
to which spurious matches influence the OD-estimates was studied by Makowski and Sinha
(1976) and Hauer (1979), who also proposed approximate statistical procedures to estimate
OD-matrices from partial license plate surveys in the presence of spurious matches. These
procedures were later improved by Maher (1985).

Another area of work has addressed the elimination of spurious matches. This has resulted
in procedures that are usually heuristic and require not only the partial registration, but also
other data, such as time stamp, vehicle type etc. Spurious matches are then eliminated by
imposing extra conditions to a ‘match’, for example by requiring corresponding vehicle types,
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arrival within a certain time window, etc. Methods proposed by Shewey (1983) and Evans et
al. (1993) can be classified in this category. Also most commercially available number plate
matching programs are of this category, e.g. Buchanan and Partners (1986), Lucas (1986), and
MVA Systematica (1987).

Statistical procedures based on partial registration data and time stamp information were
proposed in Watling and Maher (1988), Watling (1990), and Watling and Maher (1992).

Some effort has also been spent on the recovery from observation errors. Some types of
errors are frequently made by human observers, for example mixing up the characters ‘3’ and
‘8’ or transposing characters, e.g. writing down ‘xx-34-np’ instead of ‘xx-43-np’. Heuristic
procedures to compensate or correct for this type of recording errors are common practice, see
e.g. Hamerslag (1978), the NOPCOP (Lucas, 1986) and MicroMatch computer programs
(Buchanan and Partners, 1986), and proposed improvements by Evans et al. (1993).

Reviewing the literature on this subject, it catches the eye that there is an emphasis on the
statistical treatment of the phenomenon of spurious matches, while very little attention is paid
to the statistical treatment of recording errors. Noted exceptions are Geva et al., (1982) who
elegantly treat the problem of recording errors, and Watling (1990, 1994). Watling discusses
the case where a combination of spurious matches and recording errors occurs, but omits a
tests for this combination due to computational constraints.

7.3 Processing combined data

The problem that is considered in this chapter deviates from the traditional problem in a
number of ways:
 • The license plate surveys will be used in the context of dynamic EE-estimation rather than 

static OD-estimation. In the existing approaches the time stamp data are used only to elimi-
nate spurious matches. A trivial extension is however to use the time stamp data also to 
obtain time varying EE-estimates.

 • Instead of recording partial registration numbers, complete registrations will be read using 
automated license plate readers. This eliminates the problem of spurious matches, since 
each registration uniquely identifies a vehicle. On the other hand this introduces the prob-
lem of recording errors. If license plates are to be read in a cost effective manner then less 
than perfect recognition rates have to be taken into account. Researchers report recognition 
rates during field tests of 90% at daytime and 65% at night (Kanayama et al., 1991) from 
CCTV (front-view) images obtained from a single floodlight assisted camera.

 • We will be interested in using a combination of license plate surveys and link volume 
counts rather than exclusively using license plate surveys.

 • Contrary to the usual assumptions, where the locations of recording the license plates 
jointly define a cordon (Ortúzar and Willumsen, 1990) and individually correspond to 
either origins or destinations, recording stations need not correspond with origins or desti-
nations, and an arbitrary number of recording stations may be present on each EE-path (see 
figure 7.1).

These conditions give a completely different perspective to the problem, and open up a new
field of research. This section introduces some new notation (section 7.3.1). Subsequently the
problems of updating from trajectory counts and of updating from combined data are dis-
cussed (sections 7.3.2 and 7.3.3)
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7.3.1 Notation

The following new symbols are used in this chapter:
h Number of license plate readers
ers(t) Trajectory count: Number of vehicles observed during period t

at location r and at location s, but not at any site upstream of r or
downstream of s. The numbering of the license plate readers is
chosen in such a way that r<s implies that r is not reachable
from s.

e(t), θ(r,s) Vector of trajectory counts, location of element ers(t) in the
vector e(t).

αk Recognition rate at site k.
κ Path-license plate reader incidence map. κijr=1 if route i-j uses

license plate reader r and zero otherwise, r=1,2,…h
(t) Trajectory count contribution, the number of trips that

contribute to both EE flow fij(t) and trajectory count ers(t).
Trajectory count contribution probability; the probability that a
trip in flow fij(t) contributes to ers(t).

g(t), φ(r,s,i,j) Vector of trajectory count contributions, location of (t) in this
vector.

p Vector of trajectory count contribution probabilities.
yH(t) Combined observation vector, yH′(t)=[y′(t) e′(t)]′

7.3.2 Analysis; trajectory counts

In the analysis it is assumed that each image processor produces a list of, partly erroneous,
registrations. Only the number of matches is used in the estimation process. These numbers
are summarized in a vector e(t) consisting of trajectory counts ers(t), r<s, which denote the
number of vehicles that were recognized at site r and site s during period t, but not at any site
upstream of r or downstream of s. An extra category e00(t) accounts for those vehicles that are
detected correctly once or not at all.

Whether or not a vehicle travelling on EE-pair i-j contributes to ers(t) depends on a number
of nested selections. In order to contribute, it is required that no recognition (NR) occurs
upstream of r or downstream of s, and recognition (R) occurs at both r and s, so the probabil-

Induction loop License plate recording station

Entry Exit

Figure 7.1: Sample network. Traffic data are collected with induction loops and license plate 
readers.
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ity that a trip in flow fij(t) contributes to ers(t) equals:

P[(NR upstream of r) ∧ (R at r) ∧ (R at s) ∧ (NR downstream of s)] (7.1)

This probability is given by:

= (7.2)

for 1≤r<s≤h, and complemented with .
As an aid in deriving the joint probability distribution of {ers(t), 1≤r<s≤h}, trajectory count
contributions, denoted by (t), are introduced which denote the contribution of flow fij(t) to
trajectory count ers(t). The probability that an arbitrary vehicle entering at i will contribute to
trajectory count (t) is equal to bij(t). . Hence, the joint distribution of the trajectory count
contributions is given by the following multinomial distribution, see Lehmann (1983), pg.28:

P[g(t)| (t),b(t)]= (7.3)

Now let θ(r,s) denote the position of the element ers(t) in the vector of trajectory counts e(t),
then the expectation of e(t) is given by:

E[e(t)|q(t)]=E (t)[ E[e(t)| (t)] |q(t) ]=G′(t)b(t) (7.4)

where G(t) is defined by:

Gϕ(i,j),θ(r,s)(t)=qi(t).prs
ij

i=1,2…m, i=1,2…n, r=1,2…h, s=r+1,r+2…h (7.5)

Analogous to (2.23), equation (7.4) gives rise to the specification of a measurement equa-
tion:

e(t)=G′(t)b(t)+z(t) (7.6)

where z(t) is a zero mean random variable that accounts for random effects and mis-specifica-
tion of G(t) due to observation errors contained in q(t). Like described in chapter 5, one can
derive the covariance matrix of z(t) from the multinomial distribution of the trajectory count
contributions, or one can choose a more simple approach, replacing this matrix with a diagonal
matrix derived from the average observed values.

Instead of analysing this issue in detail at this stage we will first consider the more general
case of estimating split probabilities from combined link volume counts - trajectory counts.

7.3.3 Analysis; combined data

The combined usage of volume counts and trajectory information is a yet unexplored possi-
bility to collect dynamic EE-information. It is expected that the two sources of data effectively
complement each other, provided that an appropriate statistical estimation procedure is used.

Equations (2.23) and (7.6) can be combined in the following measurement equation:
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yH(t)=HH′(t)b(t)+vH(t) (7.7)

with:

yH(t)= , HH′(t)= , and vH(t)= (7.8)

Dependencies between elements of the measurement error vector vH(t) follow from the fact
that both y(t) and g(t) can be written as linear combinations of trajectory count contributions
which are multinomially distributed according to (7.3). The estimates of the split probabilities
may benefit from knowledge of these dependencies, which may be summarized in a covari-
ance matrix R t

H. Parallel to (2.10) and (5.16) it holds that:

yH(t)=UH′ g(t)+ (7.9)

for some matrix U H of which each element is either one or zero.
The traditional problem of estimating EE-matrices from link volumes is characterized by

the dependencies b→f→y, where b needs to be estimated, the conditional distribution of f
given b is multinomial, and y is a linear combination of f.

The problem of estimating EE-matrices from combined data can be characterized in a sim-
ilar way. In fact for each network with combined observations one can define a ‘hypernet-
work’ with link volume observations only, in which the observations behave equivalently. For
this purpose divide each flow fij(t) into subflows (t) that each travel over their own imagi-
nary path with a probability bij(t)  and suppose that the observations o(t) satisfy (7.9).

Now o(t) has the statistical properties that belong to a combined observation but at the
same time is a linear combination of (notional) subflows. The statistical properties can hence
be captured in the equations derived in chapter 5.

7.3.4 Computing the covariance matrices

Using the above described hypernetwork approach opens up the possibility of computing a
point-estimate based approximation (PEBA) or a distribution based approximation (DBA) for
Rt

H, using the earlier derived equations (5.26) and (5.37) respectively.
However, this necessitates that the equivalent is supplied for the matrices U ′ , π, Qt, Bt and

Θ in (5.26), and in addition to that, for Σb in (5.37). These equivalents will be marked with the
symbol ‘H’. For the hypernetwork where every trajectory count contribution (t) travels
over its own path, it follows that these matrices are given by:

UH= (7.10)

where the nonzero elements of V1 and V2 satisfy:

V1
φ(r,s,i,j),k=τijk

V2
φ(r,s,i,j),θ(r,s) =1 

1≤r<s≤h, i=1,2,…m, j=1,2,…n (7.11)

y t( )
e t( )

H′ t( )
G′ t( )

v t( )
z t( )

s t( )
0

grs
ij

prs
ij

grs
ij

V1 V2
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The equivalent of π is given by:

πH
φ(r,s,i,j),i=1 (7.12)

for 1≤r<s≤h, i=1,2,…m, j=1,2,…n, and zero for all elements not defined by (7.12). The equiv-
alent of Qt is given by:

Qt
H=diag(πHq(t)) (7.13)

The equivalent of Bt is given by:

Bt
H=diag(bH(t)) (7.14)

where:

bH
φ(r,s,i,j)=bij(t) (7.15)

for 1≤r<s≤h, i=1,2,…m, j=1,2,…n, and zero for all elements not defined by (7.15). The equiv-
alent of Θ is given by:

ΘH= (7.16)

The matrix Φ can be used unaltered. Substituting these results in (5.26), gives the following
point-estimate based approximation for the covariance of the observation error associated with
(7.7):

Rt
H = E[vH(t) vH′(t)|b(t)=b(t)]

=UH′ [ Qt
H(Bt

H-Bt
HπHπH′Bt

H′)+Bt
HπHΦπH′Bt

H ]UH + ΘH (7.17)

Instead of (7.17) one may want to compute a distribution-based approximation of Rt
H. In

this case also the hypernetwork equivalent of Σb, denoted with Σb
H, needs to be supplied. This

matrix denotes the covariance of the vector bH(t) of which the nonzero elements are defined
by:

bH
φ(r,s,i,j)=bij(t) (7.18)

for 1≤r<s≤h, i=1,2,…m, and j=1,2,…n. Expression (7.18) may be written in a way that is com-
putationally more convenient:

bH(t)=PHb(t)
PH=diag( p )πH (7.19)

where p is the vector of (fixed) trajectory count contribution probabilities . As result of

(7.19) the covariance of bH(t) can now be derived from the covariance of b(t) according to:

Σb
H=PH Σb PH′ (7.20)

Substituting result (7.20), jointly with the earlier obtained results in (5.37), results in an

prs
ij

Θ 0
0 0
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ij
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ij



7.4 Extension to other sources of trajectory information

73

expression for the distribution based approximation of Rt
H:

Rt
H = E[vH(t) vH′(t)]

=UH′[ Qt
H(Bt

H-Bt
HπHπH′Bt

H′)+Bt
HπHΦπH′Bt

H -Qt
H (Σb

H⊗(ππ′))+Σb
H⊗(πΦπ′) ]UH + ΘH

(7.21)
7.3.5  Estimating the split probabilities

The estimation of the split probabilities from combined data poses no new problems. If the
measurement equation (2.23) is replaced with (7.7), and either the PEBA covariance matrix
(7.17) or the DBA covariance matrix (7.21) is used, then the estimators that were described in
chapter 3 and the new Bayesian updating method that was described in chapter 4 can be
applied unaltered.

The above described method to estimate split probabilities from combined data has been
tested in experiments using synthesized data. These experiments show that using combined
data consistently leads to lower errors of estimation relative to the case where only traffic
counts are used. Likewise, usage of the Bayesian updating method described in chapter 4
results in lower errors of estimation than usage of the parameter optimization methods and the
traditional Kalman filter described in chapter 3 (Van Der Zijpp, 1996).

7.4 Extension to other sources of trajectory information

Up to this point, the chapter has dealt explicitly with trajectory information obtained from
license plate readers. Other possibilities to obtain this type of information are the use of probe
vehicles transmitting their trajectories, the extraction of information from route guidance
equipment, the use of vehicles equipped with transponders, or the use of vehicle classifica-
tions, using the acoustic or electromagnetic properties of the vehicle. These data collection
techniques can be categorized on the basis of the following properties (see table 7.1):
 • The trajectory to which the information relates. This is either fixed or variable. If the data 

collection depends on infrastructure based detectors then the observed trajectory is usually 
fixed. If floating car data are used, e.g. obtained from vehicles actively participating in the 
data collection then the trajectories may refer to any part of a feasible path.

 • The time at which information becomes available. If there is active participation of vehicles 
in the observation process then information about intended destinations can become availa-
ble before completion of the trip. For example in order to receive in-vehicle route guidance 
motorists have to make their destinations known in advance.

 • The coverage of the observation. License plates have a complete coverage since each vehi-
cle is equipped with one. Alternatively a trajectory observation may relate to a sample of 
all vehicles, for example those equipped with a transponder.

 • The possibility of recording errors or mis-classification. Although no method is totally 
exempt from all error, in some cases these errors can be safely neglected while in other 
cases they can not.

 • The possibility of spurious matches. This possibility is excluded if vehicles are uniquely 
identified, but plays a dominant role in methods where vehicles are classified in a limited 
number of categories, for example based on the number of axles, or on the basis of parts of 
their registrations.

The theory that is presented in the previous sections assumes that the properties of the first
row of table 7.1 apply. In the following we will examine to what extent other sources of trajec-
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tory information can be used.

With respect to trajectory and time of reporting, data obtained from active probes and route
guidance equipment exceed the requirements. Therefore, as far as these aspects are concerned
these sources of trajectory information may be used instead of license plate data, although this
would come down to disregarding or delaying the processing of a part of the information.

The issue of incomplete coverage can be approached by introducing a sampling criterion.
Traditionally this sampling criterion was used to lower the burden on the human observer, see
Geva et al. (1982). An example is limiting a license plate survey to only white vehicles. The
same theory can however be applied to any source of trajectory information. The trajectory
information only applies to vehicles that satisfy the sampling criterion. Let β be the probability
that a vehicle satisfies the sampling criterion, e.g. the fraction of vehicles equipped as probe
vehicles, then multiplying all instances of  (except ) in the previous section with the fac-
tor β would result in a theoretically correct method.

With respect to the possibility of recording errors, all methods other than automated license
plate surveys have equal or better specifications, therefore as far as this aspect is considered all
methods fit in the theory that is described in this chapter.

Finally the possibility of spurious matches, that is two different vehicles being mistaken for
one single vehicle, does only occur with methods that use vehicle classification. The theory
described in the previous sections does not allow for this possibility and the issue has not been
further investigated. A theoretical treatment of the problem of processing license plate surveys
where both recording errors and spurious matches occur was given in Watling (1990).

Summarizing, the theory described in this chapter not only applies to license plate surveys,
but also to trajectory information that may be retrieved if active probes, transponders or route
guidance equipment, or in fact any combination of these, is used. The theory does not apply to
trajectory information that could be derived from vehicle classification methods.

a. : The term active probes refers to vehicles storing and transmitting their trajectory, see Westerman 
(1995), other vehicles marked up for the sole purpose of collecting traffic data with batches, bar-codes or 
transponders are referred to as passive probes.

Table 7.1: Typology of trajectory observation techniques

group(a) trajectory
time of 

reporting coverage
possible 

recording 
errors

possible 
spurious 
matches

License plate survey fixed after trip 100% yes no
Active probes variable after trip sample no no
Transponders fixed after trip sample no no
Vehicle classification fixed after trip 100% yes yes
Route guidance fixed before trip sample no no

prs
ij p00

ij
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7.5 Conclusions

Trajectory counts such as license plate surveys have been used for a long time in traffic
engineering, but the situation in which this information is used in combination with traffic
volumes has not been investigated earlier. Also the utilisation of trajectory information for
dynamic EE-estimation is a new problem. Finally, the use of multiple recording stations, posi-
tioned at arbitrary locations and the possibility of recording errors adds another new dimen-
sion to the problem.

Nevertheless, combined volume counts/trajectory observations fit smoothly into the Baye-
sian framework of EE-estimation. The trajectory information and volume counts have
dependencies that stem from the fact that both can be interpreted as a sum of trajectory count
contributions; those parts of an EE-flow that are observed at at least two sites. To make opti-
mal use of all available observations their mutual correlations should be specified. This chap-
ter describes how this can be done.

The theory of updating from combined observations that is described in this chapter can
also be applied to other sources of trajectory information such as probe vehicles, transponders
and route guidance equipment.
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8. Simulations and Sensitivity Analysis
8.1 Introduction

The objective of this chapter is to make a quantitative comparison between the split ratio
methods known from literature of which an overview was given chapter 3, and the new Baye-
sian method and its variants that is discussed in chapter 4. A second objective is to gain insight
into the sensitivity of the methods for characteristics of the traffic system, such as the topology
of the network, the size of the EE flows and the rate of change in the split probabilities.

8.2 Methodology

In order to be able to test the methods under a range of circumstances, testdata are gener-
ated according to a number of specifications that can be given in advance. The testdata com-
prise link volumes as well as EE-flows. This makes it possible to evaluate and compare the
various methods. The process of generating the testdata is described in detail in section 8.2.1.
The multiple separate aspects of the estimation methods that have been discussed in the previ-
ous chapter give rise to a large number of possible method variants. The method variants that
will be tested are described in section 8.2.2.

Jointly, the different network specifications and method variants give rise to an array of
combinations, all of which are evaluated using criteria that are described in section 8.2.3. To
reduce the influence of random effects, the above described process of generating datasets and
evaluating method variants will be repeated ten times, while averaging the evaluation results.

8.2.1 Generation of testdata

The testdata are generated randomly according to the scheme of the motorway model, see
figure 2.3. This involves the following steps:
1. generate the network topology,
2. generate the split probabilities,
3. generate the entry flow rates,
4. generate and assign the EE-flows,
5. generate the entrance volume observation errors and add these to the entry volumes,
6. generate the link volume observation errors and add these to the link volumes.

Above steps result in a set of EE-flows and a set of entry-volume and link-volume observa-
tions. The options that can be specified prior to the generation of network and testdata are
described in table 8.1.
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Table 8.1: Network specifications
-description of parameters-

Parameter Description

m

The number of entrances. All generated networks are linear networks with
entrances and exits connected to a corridor (see figure 8.1). The locations of all
entrances, except the first, are generated randomly. The first entrance is always
positioned at the beginning of the corridor. This is to prevent the generation of
networks with one or more unreachable exits.

n The number of exits. The positions of the exits except for the last two, are gen-
erated randomly. The last two exits are positioned at the end of the corridor.

T The maximum number of periods. This is the number of periods for which data
are generated.

σb
2

The rate of change in the split parameters. The split parameters are initially
generated by simulating a multi dimensional random walk according to:

b’(t+1)=b(t)+w’(t), 
w(t)∼MVN[0,σb

2I], 
t=0,1,…T (8.1)

Subsequently the values b’(t) are mapped to the hypercube [0,1] using:

b’’(t)=1-abs(1-abs( rem(b’(t),2) )) (8.2)

Finally the result is normalized using:

bj(t)=b’’j(t)/∑k∈J b’’k(t) (8.3)

where J is the index set of EE-pairs that share their origin with EE-pair j. The
recursion (8.1), (8.2), (8.3) is initialized with a random value b(0). Examples of
sequences of split probabilities generated in this way are shown in figure 8.2.

q

The mean entry flow rate. This scalar value refers to all periods and all
entrances and refers to the entry flow rates.The entry flow rates in turn are used as
an average when generating the actual entry volumes. These volumes are gener-
ated randomly using a normal distribution of which mean and variance are chosen
in such a way that a Poisson distribution is approximated.

qrange The range within which the entry flow rates alter. The entry flow rates may
differ among entrances between (1-qrange).q and (1+qrange).q



8.2 Methodology

79

qmode

The way in which the entry flows alter. The simulation program has two modes
of operation. In the first mode (qmode=0) the entry flow rates are constant during
the simulation but differ randomly among entrances within the range prescribed
by qrange. In the second mode (qmode=1) the flow rates change within time
according to the function:

flowratei(t)= q . (1+qrange.cos( 2πt/T+offseti )) (8.4)

The offsets are generated randomly in the interval [0,π/2]. Examples of sequences 
of entryflows that are generated using the parameters q, qrange, and qmode are 
shown in figure 8.3.

σq
2

The magnitude of the observation error in the entry volume observations. After
the entering volumes have been generated, an observation error is added to these
volumes. This error is randomly generated using:

r(t)∼MVN[0,σq
2I] (8.5)

σy
2

The magnitude of the observation error in the link volume observations. After
generating and assigning the EE-flows, the link-flow volumes are known. To
these volumes a randomly generated error is added. These errors satisfy:

s(t)∼MVN[0,σy
2I] (8.6)

Table 8.2: Network specifications
-values of parameters-

Network

1 2 3 4 5 6 7 8 9
m 4 4 4 4 4 4 4 4 6
n 4 4 4 4 4 4 4 4 6
T 48 48 48 48 48 48 48 48 48
σb

2 0.0001 0.01 0 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
q 100 100 100 200 100 100 100 100 100
qrange 0.5 0.5 0.5 0.5 0.05 0.5 0.5 0.5 0.5
qmode 0 0 0 0 0 1 0 0 0
σq

2 100 100 100 100 100 100 10 100 100
σy

2 100 100 100 100 100 100 100 10 100

Table 8.1: Network specifications
-description of parameters-

Parameter Description
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Figure 8.1: The ten randomly generated networks for network specification 9

network spec. 9, data set 1

network spec. 9, data set 2

network spec. 9, data set 3

network spec. 9, data set 4

network spec. 9, data set 5

network spec. 9, data set 6

network spec. 9, data set 7

network spec. 9, data set 8

network spec. 9, data set 9

network spec. 9, data set 10
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Figure 8.2:  Stacked plots of the split probabilities, generated for σb
2=0.0001 (above) and 

σb
2=0.01 (below). The plots contain the split probabilities in the sequence 

{b11,b12,…b44}. The specifications according to which the split probabilities were 
generated correspond to specification 1 and specification 2 in table 8.2.
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network spec. 1, data set 1

network spec. 6, data set 1
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(veh/period)

Figure 8.3: entry volumes generated for qmode=0(above) and qmode=1 (below). The 
specifications according to which these entry flows were generated correspond to 
specification 1 and specification 6 in table 8.2.
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The network specifications that have been used to generate the testdata are listed in table
8.2. The numbers have been specified bearing in mind a period length of ten minutes. An
average entry flow rate q=100 hence corresponds with 600 vehicles per hour, and 48 periods
correspond with a total duration of 8 hours. A rate of change corresponding to σb

2=0.0001
corresponds with an hourly rate of change of 0.0006 which is a conservative, but realistic
value in view of the upper bound 0.0013 that was derived from the empirical data that were
available (see section 6.2). A rate of change corresponding to σb

2=0.01 per ten minutes should
be considered as a high value in view of the empirical data.

To reduce the influence of random effects, for each network specification ten data sets are
generated. By means of an example, figure 8.1 shows the ten networks that were generated for
specification 9. Each estimation method will be applied to all these ten sets after which the
errors of estimation will be averaged.

 The seeds with which the random generators are initialized only depend on the simulation
number, not on the network specification. Therefore if one element in the network specifica-
tion is changed, this effects only one aspect of the generated data. For example increasing the
mean entry flow rate q or changing the mode of operation qmode does not affect the split pro-
portions that are generated. Moreover, changes in parameters result in changes in the simu-
lated data according to a continuous mapping. This is known as the variance reduction
technique.

Networks two and above are identical to specification one except for one property per net-
work variant, which is printed italic in table 8.2. This is to gain insight into the relation
between system properties and estimation accuracy. The findings on this subject are summa-
rized in tables 8.5-8.8 in a later section.

8.2.2 Solution algorithm alternatives

Split ratio methods can be divided into four main categories:
 • Least Squares (LS)
 • Inequality Constrained Least Squares (ICLS)
 • Fully Constrained Least Squares (FCLS)
 • Bayesian updating (BU)

Within these categories different variants have been discussed in earlier chapters. Table 8.3
describes for each category which options can be specified, referring to earlier chapters if nec-
essary.

It is not possible nor useful to test every combination of options. Therefore in each cate-
gory a default method is defined and a number of variants on this method are tested. In each
variant only one parameter is changed. In table 8.4 the resulting methods have been listed.
Every method has been given a number, that will be referred to when the estimation results are
presented. For each method, the options that deviate from the standard method in the category
are printed italic. The default methods are method 10, 20, 30 and 47.
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Table 8.3: Solution algorithms
-description of options-

Category Description

Options

Least Squares 
(LS)

The (discounted) LS solution corresponds to problem (3.10). This solu-
tion might not satisfy the inequality and equality constraints (2.27) and
(2.28). In the implementation the computed solution is forced to satisfy
the inequality constraints by setting:

b(t)=min(1,max( 0,b’(t) )) (8.7)

where b’(t) is the computed LS solution.

a1

The method has one design parameter to be specified which is the dis-
counting factor λ (see section 3.3.1). The optimal choice of λ is a mono-
tone decreasing function of the rate of change parameter σb

2 that was used

during the generation of the testdata, see (8.1). Moreover σb
2=0 should

imply λ=1. Other than that, very little is known about the optimal value
for λ, and λ should be determined by experimenting. In the tests described
in this chapter the experiments are limited to determining the value for a1
that gives the best results in combination with the following formula:

λ=1−(σb
2)a1 (8.8)

Inequality
Constrained

Least Squares
(ICLS)

This solution follows from solving problem (3.11).

a1
A discounting factor λ is specified by choosing parameter a1 and using

(8.8).

solution
algorithm:
PCG, IS

For the solution of the constrained minimization problem an algorithm
must be chosen from two alternatives. The first algorithm is the projected
conjugate gradient (PCG) algorithm that was described in section A.4 in
appendix A. This algorithm is designed to compute the exact minimum.
The second algorithm is the iterative solving (IS) algorithm that was
described in section A.5 in appendix A. This algorithm is CPU time effi-
cient, but may produce an inexact solution if the unconstrained solution
violates multiple inequality constraints.

Fully Constrained
Least Squares

(FCLS)

This solution corresponds to problem (3.13)

a1 This parameter defines the discounting factor according to (8.8)
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solution
algorithm:
PCG, IS

Either one of these minimization procedures can be used.

Bayesian updating
(BU)

This method is defined recursively with equations (4.16) and (4.19).

a2

The matrix Qt in (4.16) is specified with

Qt=a2σb
2I (8.9)

The choice a2=1 would be consistent with (8.1). However, by specifying
alternative values for a2 the sensitivity of the method for Qt can be tested.

covariance
matrix:
PEBA
DBA

U
ALF

DPEBA

In chapter 5, expressions for the spatial correlation between link-flow
observations have been derived, resulting in various approximations for
the covariance matrix Rt that is used in (4.16). For the purpose of testing
and sensitivity analysis, the following methods have been implemented:
-a- the Point Estimate Based Approximation (PEBA) of Rt, see (5.26)
-b- the Distribution Based Approximation (DBA) of Rt, see (5.36)
-c- the Diagonalized Point Estimate Based Approximation (DPEBA). 

This option is equal to -a-, only this time the covariances are 
ignored. Usage of the DPEBA matrix comes down to ignoring the 
spatial correlations between measurements. The theory of chapter 
5 is used, but only to determine the variance of the observation 
error.

-d- the Average Link-Flow (ALF), see (5.9):

Rt=diag(y), (8.10)

where y is the average observed link-flow. This method does not 
use any of the new results of chapter 5, and can be seen as a first 
step in an experimental process to find a satisfactory covariance 
matrix.

-e- Unity (U), see (5.8):

Rt=I (8.11)

This choice can be seen as an alternative to -d-. Instead of specify-
ing the error variance proportional to the average observed value, 
the error variance is assumed to be equal for all observations.

Table 8.3: Solution algorithms
-description of options -

Category Description

Options
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a3, a4

If Rt is specified using either strategy -a-, -b-, or -c-, covariance matri-
ces need to be specified for the observation errors of the entrance volumes
and link volumes. These matrices are specified via the parameters a4 and
a5, using the following equation:

Φ=a3σq
2I (8.12)

Θ=a4σy
2I (8.13)

Specifying a3=a4=1 would be consistent with the way the testdata are
generated.

recursive
constr.
(RC)

The theory developed in chapter 4 suggests that Recursive Constrain-
ing (RC), see equation (3.22), should not be applied. The RC option has
been implemented to check this theory.

true
covariance

(TC)

If Rt is specified using strategy -a- the possibility exist to use the true
split probabilities rather than a point estimate. The behaviour of the
method on this point is determined by the option True Covariances (TC).
If this option is selected then the true split probabilities that were gener-
ated during the simulation, are used while determining the covariance
matrix. This option can be set to find the best possible specification of Rt.
Running the filter with this option therefore produces a lower limit for the
estimation error that can be reached with the BU method.

u(t)

The steering parameter u(t) is set to zero for all variants. This is con-
sistent with the way the testdata were generated. In the chapter that
describes the experiments with empirical data, this parameter is used to
express historical experience.

post
processing:

MAP-IS
MAP-PCG

SE-AM
SE-RM

In chapter 4 a number of ways are described to perform the post-
processing step. These are:
 • Computation of the Maximum APosteriori solution using the method 

of Iterative Solving (MAP-IS), see sections 4.5.1 and A.5.
 • Computation of the Maximum APosteriori solution using the Projected 

Conjugate Gradient Method (MAP-PCG), see sections 4.5.1 and A.4.
 • Computation of the Subjective Expectation using the Approximated 

Mean (SE-AM), see section 4.5.2, equation (4.24).
 • Computation of the Subjective Expectation using the fRandomized 

Mean (SE-RM), see section 4.5.2, equation (4.32) and lemma 4.1.

Table 8.3: Solution algorithms
-description of options-

Category Description

Options
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Table 8.4: Solution algorithms
- parameter values-

LS 10 1 IS

ICLS 20 1 PCG
21 1 IS

FCLS

30 1 PCG
31 1 IS
32 0.5 PCG
33 2 PCG

BU

40        1 PEBA 1 1 MAP-PCG
41        1 PEBA 1 1 MAP-IS
42        1 PEBA 1 1 SE-AM
43        1 PEBA 1 1 SE-RM
44        1 DBA 1 1 SE-RM 
45        1 U     SE-RM 
46        1 ALF   SE-RM 
47        1 DPEBA 1 1   SE-RM 
48        1 DPEBA 0 1   SE-RM 
49        1 DPEBA 1 0   SE-RM 
50        0 DPEBA 1 1   SE-RM 
51        0.1 DPEBA 1 1   SE-RM 
52        10 DPEBA 1 1   SE-RM 
53        1 DPEBA 1 1 RC  SE-RM 
54        1 PEBA 1 1  TC SE-RM 
55        1 ALF RC  MAP-PCG
56        1 ALF MAP-PCG
57 1 U MAP-PCG
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8.2.3 Evaluation criteria

The testdata that have been generated represent a completely observed EE-table: not only
are the observations available from which the split parameters can be estimated, but also can
the estimation result be compared with the true splitprobabilities and EE-flows. This enables
the evaluation of the following two criteria:

RMSEEEflow(t)= (8.14)

RMSEsplit(t)= (8.15)

Criterion (8.15) has a better transferability since this criterion does not depend on the mean
entry flow rate. On the other hand criterion (8.14) relates more directly to the error in EE-flow
prediction, which is the quantity we are interested in. The experiments however show consist-
ency between the values of both criteria. The results are therefore discussed using criterion
(8.15). The outcomes of criterions (8.14) and (8.15) have been summarized in tables 8.6 and
8.5 respectively.

In view of testing the methods with empirical data, for which no completely observed EE-
table is available, a third evaluation criterion is proposed:

RMSElinkflow(t)= (8.16)

with: K set of reference locations, possibly a subset of all observations,
K# number of reference locations.
τijk assignment map, τijk=1 if EE-pair ij contributes to observation k,

and zero otherwise.
Note that the data that are used to evaluate b(t-1), q(t) and y(t), are not used to compute b(t-1).
Criterion (8.16) isreferred to as the link-flow error criterion. In order to test the usefulness of
this criterion, the outcomes are compared with those of the other criteria. Table 8.7 contains
the outcomes of the link-flow error criterion.

8.3 Results

The results that are presented in this section are based on the datasets, estimation methods
and evaluation criteria that were described in sections 8.2.1-8.2.3. In the text, network specifi-
cations and methods are briefly characterized, and referenced with a number that can be found
in tables 8.2 and 8.4 respectively. How the various datasets and methods relate to the theory
that was described in this thesis can subsequently be looked up in tables 8.1 and 8.3.

Ten networks are generated with every network specification. Therefore every combination
of network specification and method specification is evaluated ten times. The results of these
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evaluations are averaged, and can be displayed in a graph. Comparison of these graphs gives
insight in the relative performance of the various methods. A computer program has been
implemented that makes inspection of arbitrary combinations of graphs possible. Some illus-
trative combinations are plotted in figures 8.4-8.6, and are discussed below.

The performance of other combinations can be inspected in less detail through table 8.5.
This table contains the average value of the last forty periods of the graph, i.e.:

(8.17)

The first eight periods have been ignored in order to get a better view of errors that would
occur in a round the clock operation of the methods.

In a similar way criteria (8.15) and (8.16) have been summarized in tables 8.6 and 8.7. The
average computation time in CPU seconds per time period is shown for each combination of
method and network specification in table 8.8.

Parameter optimization methods (LS, ICLS, FCLS)
Method 10 (least squares), 20 (inequality least squares), and 30 (fully constrained least

squares) are parameter optimization methods with different levels of constraining the parame-
ter space. Comparison of these methods, see figure 8.4a, was expected to show an improved
performance when extra constraints are imposed. This improvement occurs if the inequality
constraints are imposed, but is not followed by another improvement when the equality con-
straints are imposed. Presumably the explanation for this is that the parameter optimization
methods reach the best value for criterion (8.15) by systematically underestimating the split
parameters. Imposing the equality constraints (method 30) prevents the method from reaching
this biased solution. This issue will also be discussed in the next chapter. Figure 9.6 illustrates
this phenomenon.

The difference between methods 21 and 31 on the one hand and methods 20 and 30 on the
other hand is that the latter two methods use an exact solution algorithm (projected conjugate
gradients) while the first two methods use an inexact algorithm (iterative solving). Comparing
these methods will tell us whether or not the use of a suboptimal optimization algorithm has
significant negative influence on the performance of these parameter optimization methods.
Figure 8.4b shows that this is the case, although the effect fades away as a sufficient number
of observations is available. Table 8.8 shows that the use of the IS method is a factor 10 more
efficient in terms of CPU time. However the table also shows that CPU requirements will
hardly be a constraint for any of the methods that are proposed, given the sizes of the networks
that are considered.

Method 32 and 33 are equal to method 30, except for the choice of the discounting param-
eter a1. Comparison of method 30, 32, and 33, see figure 8.4c, shows that the parameter opti-
mization methods are barely sensitive to this value.

Method 57 is a BU method where the MAP postprocessing is applied and the covariance
matrix is set to the identity matrix. Figure 8.4d confirms the claim made in section 4.5.1 that
the FCLS method is a special case of a BU method.

Given the results presented in figure 8.4, methods 20 and 30 were selected as representa-
tives of the parameter optimization methods that will be used for further comparisons.

RMSE network
split t( ) 10 T 8−( )⋅( )⁄

t 9=

T

∑
network 1=

10

∑
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Bayesian updating (BU)
Method 40, 41, 42 and 43 are identical BU methods, except for postprocessing algorithm

that is used. Clearly the methods that evaluate approximations of the subjective expectation
(SE), methods 42 and 43, give the lowest error of estimation, see figure 8.5a. This is consistent
with theory. Method 42 uses the approximated mean while method 43 uses the randomized
mean. The randomized mean gives slightly better results than the approximated mean, at the
cost of an increase of the computation time with a factor of twelve, as can be seen in table 8.8.
The first part of the curves of methods 42 and 43 coincide. This should be subscribed to the
fact that the randomized mean has not been computed if the probability of sampling a feasible
outcome is too low, a situation that apparently occurred during the first few periods that the fil-
ter was running. For these cases the approximated mean has been used instead. Given the bet-
ter performance of the postprocessing method based on SE combined with randomized mean
(SE-RM) (method 43), which also shows the method is applied to other networks (see table
8.5), this postprocessing method was selected for further comparisons and sensitivity analysis.

As far as the MAP postprocessing methods are concerned, figure 8.5a shows that the use of
a suboptimal optimization method (method 41) is at the cost of the performance, but that the
effects are minor and stay limited to the first few periods.

Figure 8.5b shows the performance of three method variants that are identical, except for
the covariance matrix that is used. Method 43 uses the point estimated based covariance
matrix (PEBA), while method 44 uses the more complex distribution based method (DBA). A
difference in performance between both methods can hardly be observed. Method 47 uses only
the diagonal elements of the point estimate based approximation (DPEBA) of the covariance
matrix. This method seems to have a better convergence and a slightly worse initial response.
The overall averaged error however is equal to that of method 43 or 44, also when the method
is applied to other networks, see table 8.5. Although it was not expected in advance that using
the DPEBA covariance matrix would lead to equally good results as those obtained with the
PEBA or DBA matrix, this needs not necessarily be conflicting with theory: the result can be
subscribed to errors in the point estimates of the split probabilities from which both matrices
are derived. Another possible explanation is that much of the effect that the use of the covari-
ances would have had, is already reached by explicitly imposing the equality constraints.

Given the comparable results, the DPEBA option was chosen to be a part of the standard
method, as it is expected that this method is less sensitive to specification errors then the oth-
ers.

In figure 8.5c the DPEBA method of choosing a covariance matrix for the observation error
is compared with two very simple strategies, the first of which is choosing the identity matrix
(method 45) and the second of which is choosing a diagonal matrix containing the average
link-flow (ALF) volumes (method 46). The latter strategy seems to work nearly as well as
method 47. Since method 46 is far more easy to implement and does not need the specification
of covariance matrices for the physical observation errors in the entry volumes and link vol-
umes, Φ and Θ respectively, method 46 might be preferable in practice.

Figure 8.5d relates the performance of method 47 to that of alternative methods. Method 30
represents the FCLS method. This method was quoted by Cremer and Keller (1987) as the best
available method. Applied to the networks generated according to the specification in table 8.2
however, this method fails to give good results, and is outperformed convincingly by the BU
method.

Method 55 is a special case of a BU method that coincides with a traditional Kalman filter,
it represents a number of choices that seem sensible at first sight. It uses the ALF covariance
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matrix, and it resets the estimates to the nearest boundary if an inequality constraint is vio-
lated, a process that was referred to as recursive constraining earlier, see section 3.3.4. It uses
the MAP-PCG postprocessing, which implies that it just outputs the parameter that tradition-
ally represents the mean in the Kalman filter, as the recursive constraining ensures that this
parameter will always be in the hypercube [0,1] and hence represents the location of the max-
imum. The error of estimation of method 55 is significantly higher than that of the new BU
method, although the method performs better than the FCLS method.

 Method 54 uses the true spit-parameters to derive a covariance matrix, and therefore is a
method that could never be applied in practice. However, it serves as a means to determine a
lower boundary for the error of estimation. Consequently, this method should consistently
produce the lowest error of estimation, which can be checked in table 8.5. The difference
between the curves of method 47 and method 54 represents the room for further improvement.
Figure 8.4d shows that this is small compared to the improvement of the existing methods that
already has been reached.

Figure 8.6 contains graphs that relate to the sensitivity analysis for mis-specifying different
system properties. Each time, method 47 is taken as a point of departure. This is a BU method
that uses the DPEBA covariance matrix and the SE-RM postprocessing routine. The parame-
ters a2=a3=a4=1 imply that the specification of the method is consistent with the way the test-
data are generated.

In figure 8.6a, method 48 is a variant of 47 that ignores errors in the entry volume counts
(a3=0), while method 49 is a variant of 47 that ignores errors in observations of other link vol-
umes (a4=0). Both mis-specifications lead to slightly higher errors but reveal no particularly
high sensitivity to this kind of mis-specification.

In figure 8.6b, method 51 underestimates the change in the split probabilities with a factor
10 (a2=0.1), while method 52 represents the assumption that the split probabilities change ten
times faster then in reality (a2=10). At the rate of change of network specification one, differ-
ence in performance between method 47, 51, and 52 can hardly be observed. For network
specification 2 in which a 100 times higher rate of change was specified, mis-specification of
this rate does lead to a slightly higher error, see table 8.5.

Figures 8.6c and 8.6d evaluate the influence of applying the recursive constraining option.
Method 53 is a variant of method 47 that applies recursive constraining. Likewise method 56
is a variant of the traditional Kalman method mentioned earlier, where method 55 uses recur-
sive constraining and method 56 does not. It turns out that the influence of the RC option
largely depends on the network specification. Figure 8.6c shows a network with a high rate of
change. For this network, specification of the RC option actually leads to better results. Figure
8.6d shows a network for which the state does not change. For this network the specification
of the RC option works out very wrong. This convincingly confirms the theory of section 4.3.
A practical guideline that follows from this results is that the specification of the RC option
should not be combined with specifying a zero rate of change, even if the state is known to be
constant.

Comparing evaluation criteria
In the next chapter the methods will be evaluated using empirical data that were collected

on the Amsterdam beltway during three weeks. These data consist of observations of link-
flows, but do not contain any direct observations of EE-flows. To create the possibility to
evaluate the estimation methods, criterion (8.16) was proposed. It is hoped that this criterion
can be used as a measure of relative performance. To check whether this is true, the outcomes
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of all criteria used in this chapter have been ranked from 1 to 25, where 1 corresponds with the
‘best’ outcome, and 25 corresponds with the ‘worst’ outcome. This ranking is shown in table
8.9 for the split error, EE-flow error, and link-flow error, separated by comma’s. Table 8.9
shows that the rankings that originate from the split error and the EE-flow error are largely
consistent, but that the rankings that originate from the link-flow errors deviate. In particular
the link-flow error criterion seems to favour the parameter optimization methods (method 10-
33), and the BU methods that use MAP as a part of the postprocessing (methods 40-41 and 55-
57). The performance of methods 46 and 47 is underestimated in a systematic way. An illustra-
tive example of this is given in figure 8.7a&b.

Another illustrative comparison is that between method 46 and 56. This comparison is of
special interest because internally both methods work with the same subjective probability dis-
tribution. The difference in performance should therefore be entirely explained by the differ-
ence in the postprocessing algorithm that is applied. Comparing the performance of both
methods according to the link-flow error criterion (see table 8.7), method 56 scores slightly
better for network 1-8 and much better for network 9 (see figure 8.7d). According to the split
error criterion (see table 8.5), the score of method 56 is very poor compared to that of method
46 for all networks (see figure 8.7c to compare the results for network 9).

Figure 8.7d is a problematic plot since in theory the score of method 46 according to the
link-flow error criterion should be equal or better under all circumstances. This can be seen as
follows:

It is commonly known that for any scalar or vector valued random variable y, µ≡E[y]
defines a minimum variance estimator in the sense that µ minimises E[(y-µ)'.(y-µ)], regardless
of the distribution of y. Given the expectation of the split probabilities based on past observa-
tions, bij, and the observed on ramp volumes q, the expected link volumes at the reference
locations are given by (using the symbols of equation 8.16.):

E[yk]= (8.18)

see section 2.4.2 for more details. Since method 46 produces the subjective expectation (SE)
one would expect this estimate to minimize criterion (8.16) relative to all other methods.

Given this discrepancy between theory and experiment, the mechanism leading to figures
8.7c&d has been further investigated. A series of experiments was done comparing method 46
and 56 under different circumstances. It turns out that all cases where method 46 scores poorly
on the link-flow error compared with method 56 coincide with a failure to compute the rand-
omized mean. As was mentioned in section 4.5.2 the randomized mean can only be evaluated
if the probability of sampling a valid solution is sufficiently high. In other cases a suboptimal
procedure has been used, see section 4.5.2. It now appears that although the use of this proce-
dure leads to only slightly higher split-errors, the score on the link-flow error criterion deterio-
rates considerably as a result of this procedure. The reason that this effect can be most clearly
observed in combination with network specification 9 is that this specification includes more
origins and destinations than the other specifications. Therefore the state vector that must be
estimated is relatively large which decreases the likelihood of successfully applying the rand-
omized mean procedure.
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8.4 Summary of results

The most important findings are summarized once more in figure 8.8, which shows the
split errors from table 8.5 averaged over all networks. Relative to the FCLS method that was
formerly considered to be the best available method (Cremer and Keller, 1987), the error of
estimation has decreased by 0.065 units from 0.199 (method 30) to 0.134 (method 43), due to
the introduction of the new BU method. This is a reduction in the error of estimation with
31%. Roughly 32% (0.021 units) of this reduction should be subscribed to the use of the
‘PEBA’ covariance matrix as opposed to the use of the ‘Unity’ matrix (arrow c in figure 8.8)
which was shown to be implicit to the FCLS method (see figure 8.4d). The largest part of the
improvement (56%, .036 units) is obtained when the approximated mean (SE-AM) is used
instead of the MAP estimate (arrow d). Moreover this adaptation results in computation times
faster by a factor ten. Finally, the last 12% (.008 units) of the improvement is reached by com-
puting the randomized mean rather than the approximated mean (arrow e). An extra improve-
ment of 0.011 units (17% of the initial reduction) would still be possible if the true covariance
matrix would be available (method 54). By making use of the ALF matrix the results only
deteriorate 0.005 units (8% of the initial reduction) relative to method 43 (arrow g + i), while
the latter matrix can be derived without using knowledge about the system specification.

8.5 Conclusions

The experiments with synthesized data that have been reported in this chapter have con-
vincingly shown the advantages of the new BU method that was presented in chapter 4 in
terms of the error of estimation. An average reduction in the error of estimation of 31% rela-
tive to the FCLS method was obtained. As was mentioned in section 4.6 the practical implica-
tions of using this method are that, taking the traditional Kalman filter as a point of departure,
one refrains from recursive constraining (see section 3.3.4), and one uses a special post-
processing routine (see section 4.5). The individual effects of these two adaptations can be
observed clearly and result in a decrease of the error of estimation, see respectively arrow ‘h’
and arrow ‘j’ in figure 8.8.

This BU method was tested in combination with a variety of covariance matrices for the
measurement error. As expected, usage of the matrix that is ideal on theoretical grounds
(method 54) leads to the lowest error of estimation. However, this matrix will not be available
in practice as exact knowledge of the split probabilities is required for its computation. Within
the group of BU methods that use an approximation of the ideal matrix, the sensitivity for the
(mis)specification of the covariance matrix of the measurement error appears to be small. No
difference in error of estimation of any significance exists between method 43 that uses the
point estimate based approximation (PEBA) and method 44 that uses the distribution based
(DBA) matrix (see figure 8.5b and tables 8.5-8.7). Moreover, if the theory in chapter 5 is only
used to compute the height of the variance but not the covariance (as implied by the DPEBA
matrix in method 47), no significant deterioration of the error of estimation can be observed
(arrow ‘g’ in figure 8.8). Therefore, for practical applications this approach is recommended
as it is expected that the results obtained with the DPEBA matrix are less susceptible to mis-
specifications of system properties than those obtained with the PEBA matrix. An even sim-
pler alternative is to use the ALF covariance matrix, as in method 46. This matrix has the
average link-flows on its diagonal. Usage of this matrix results in only a small increase in the
error of estimation (arrow ‘i’ in figure 8.8) and does not require the specification of any sys-
tem properties, except for the mean of the traffic counts.

All methods have been tested in combination with network specifications that represent
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only a small variation in the split probabilities. At this level of variation, none of the methods
appeared to be particularly sensitive to mis-specification of the rate of change in the state equa-
tion.

A final conclusion concerns the usage of the link-flow error criterion 8.16. In absence of
sufficient data to evaluate the split error and the EE-flow error criteria, this criterion might be
the only one available for the evaluation of EE-estimation errors in practice. The link-flow cri-
terion systematically favours parameter optimization methods (such as LS, ICLS and FCLS),
and the BU methods that use the MAP routine for postprocessing over BU methods that use
one of the SE routines for postprocessing.

According to the link-flow error criterion the average error (excluding network 9) improves
from 17.19 to 16.56 (.63 units) if the new BU method (method 43) is used instead of FCLS
(method 30). This means an improvement of only 3.7%, as opposed to an improvement of
31% according to the split error criterion (see above).

Therefore, to make the superiority of the new BU method using SE postprocessing plausi-
ble, it is sufficient to show that this method implies a lower link-flow error. However, the
experiments in this chapter show that the new method does not necessarily imply a lower link-
flow error. Therefore, it might be impossible to demonstrate the superiority of the new BU
method in a straightforward manner on the basis of the link-flow error criterion only.

A practical ‘work-around’ for this problem is based on the observation that without any
exception, replacing the MAP postprocessing routine with an SE postprocessing routine leads
to a significant decrease of the error of estimation according to the split error criterion. There-
fore a strategy to demonstrate the superiority in terms of the split error criterion of a BU
method using SE postprocessing over another method such as FCLS, is to demonstrate that the
variant of the BU method that uses MAP postprocessing outperforms the FCLS method
according to the link-flow error criterion.
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Figure 8.8: Summary of the simulation results. The split error is read from table 8.5, and averaged 
over all networks. Each arrow represents the change of one option.
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Table 8.5: Split Errors
- average over 10 networks of criterion (8.15) -

method
network

1 2 3 4 5 6 7 8 9
LS 10 0.218 0.302 0.221 0.217 0.217 0.214 0.231 0.175 0.237

ICLS
20 0.194 0.250 0.197 0.192 0.196 0.188 0.196 0.163 0.193
21 0.198 0.259 0.200 0.194 0.198 0.192 0.202 0.164 0.199

FCLS

30 0.197 0.252 0.200 0.193 0.198 0.190 0.197 0.168 0.195
31 0.200 0.261 0.202 0.195 0.200 0.194 0.203 0.169 0.201
32 0.197 0.253 0.200 0.193 0.199 0.190 0.197 0.169 0.195
33 0.197 0.253 0.200 0.193 0.198 0.190 0.197 0.168 0.195

BU

40 0.185 0.208 0.191 0.173 0.172 0.173 0.169 0.165 0.166
41 0.186 0.210 0.192 0.173 0.172 0.174 0.170 0.165 0.167
42 0.149 0.151 0.154 0.140 0.146 0.145 0.135 0.134 0.122
43 0.140 0.143 0.144 0.131 0.139 0.135 0.127 0.129 0.121
44 0.140 0.143 0.144 0.131 0.139 0.135 0.139 0.129 0.121
45 0.208 0.172 0.203 0.199 0.204 0.208 0.208 0.174 0.183
46 0.144 0.146 0.151 0.129 0.148 0.142 0.128 0.132 0.127
47 0.138 0.142 0.143 0.127 0.142 0.137 0.128 0.132 0.122
48 0.145 0.146 0.151 0.132 0.149 0.144 0.129 0.138 0.128
49 0.143 0.146 0.150 0.131 0.147 0.144 0.141 0.132 0.128
50 0.141 0.186 0.143 0.136 0.145 0.140 0.130 0.136 0.125
51 0.140 0.146 0.143 0.131 0.144 0.139 0.129 0.135 0.125
52 0.137 0.154 0.143 0.127 0.140 0.137 0.128 0.129 0.117
53 0.137 0.138 0.255 0.140 0.133 0.138 0.131 0.131 0.121
54 0.127 0.140 0.131 0.123 0.127 0.123 0.126 0.093 0.114
55 0.175 0.186 0.379 0.188 0.174 0.187 0.184 0.153 0.190
56 0.183 0.202 0.189 0.165 0.182 0.173 0.175 0.153 0.173
57 0.203 0.228 0.200 0.200 0.200 0.206 0.204 0.176 0.189
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Table 8.6: EE-Flow Errors
- average over 10 networks of criterion (8.16) (trips/period)-

method
network

1 2 3 4 5 6 7 8 9
LS 10 21.49 30.09 21.98 41.52 21.74 19.42 22.28 16.98 25.59

ICLS 20 19.03 25.09 19.61 36.44 19.69 17.22 18.77 15.82 20.79
21 19.42 25.92 19.86 36.86 19.90 17.56 19.34 15.94 21.57

FCLS

30 19.34 25.22 19.88 36.57 19.93 17.42 18.86 16.25 20.96
31 19.66 26.06 20.06 37.00 20.06 17.76 19.43 16.39 21.69
32 19.30 24.96 19.88 36.66 19.94 17.36 18.84 16.34 20.85
33 19.34 25.30 19.88 36.56 19.93 17.43 18.87 16.25 20.96

BU

40 18.08 20.71 18.73 32.98 17.24 16.08 16.32 15.85 17.73
41 18.14 20.85 18.89 33.08 17.27 16.14 16.41 15.87 17.83
42 14.86 15.41 15.46 27.31 14.62 13.68 13.44 13.18 13.49
43 13.72 14.47 14.26 25.31 13.96 12.63 12.43 12.47 13.46
44 13.72 14.48 14.23 25.36 13.95 12.61 13.71 12.45 13.47
45 20.71 17.46 20.39 38.33 20.52 19.19 20.81 16.96 19.87
46 14.28 14.70 15.11 24.91 14.82 13.18 12.58 13.00 14.09
47 13.69 14.27 14.45 24.69 14.22 12.81 12.57 13.01 13.64
48 14.34 14.67 15.14 25.36 14.91 13.38 12.66 13.38 14.22
49 14.16 14.76 15.09 25.21 14.77 13.34 13.80 13.00 14.17
50 13.91 18.83 14.45 26.39 14.53 13.11 12.70 13.41 13.99
51 13.84 14.87 14.45 25.41 14.43 12.97 12.63 13.29 13.90
52 13.67 15.56 14.45 24.71 14.10 12.92 12.70 12.79 13.09
53 13.63 13.86 26.68 27.73 13.39 12.99 12.80 12.85 13.52
54 12.47 14.19 12.98 23.70 12.75 11.36 12.30 9.14 12.63
55 17.01 18.59 39.17 36.81 17.46 17.10 17.77 14.75 20.22
56 17.97 20.07 18.85 31.32 18.32 15.78 16.71 14.74 18.70
57 20.09 22.73 19.88 38.11 20.05 18.84 20.01 16.99 20.06
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Table 8.7: Link-flow Errors
- average over 10 networks of criterion (8.17) (vehicles/period)-

method
Network

1 2 3 4 5 6 7 8 9
LS 10 29.06 50.19 29.94 50.42 26.39 25.82 34.95 19.02 79.53

ICLS
20 17.14 23.82 16.70 19.72 17.15 17.23 12.67 14.17 19.71
21 17.17 23.87 16.73 19.74 17.16 17.25 12.69 14.18 19.70

FCLS

30 17.01 23.69 16.56 19.57 16.97 17.06 12.53 14.14 19.52
31 17.04 23.74 16.58 19.59 16.98 17.08 12.55 14.15 19.51
32 16.98 21.74 16.56 19.48 16.93 17.02 12.49 14.10 19.48
33 17.01 24.02 16.56 19.57 16.97 17.06 12.53 14.14 19.52

BU

40 16.66 20.14 16.44 18.34 16.42 16.60 12.24 13.71 18.93
41 16.65 20.15 16.44 18.34 16.42 16.60 12.24 13.71 18.94
42 17.58 21.85 17.82 22.26 17.21 17.37 14.15 14.32 25.15
43 16.66 20.93 16.69 18.54 16.53 16.75 12.82 13.58 25.11
44 16.66 20.92 16.69 18.54 16.50 16.75 13.15 13.57 25.09
45 20.21 22.11 18.21 24.57 19.62 19.21 16.74 16.09 24.81
46 17.03 21.48 16.84 19.03 16.98 16.92 12.72 13.81 26.85
47 16.90 21.25 16.76 19.09 16.91 16.90 12.81 13.83 27.37
48 16.98 21.28 16.77 19.11 16.96 16.98 12.82 14.06 26.52
49 17.01 21.45 16.89 19.01 16.99 16.91 13.18 13.81 26.86
50 17.10 24.19 16.76 19.82 17.10 17.12 12.99 14.03 27.59
51 17.01 20.68 16.76 19.27 17.00 17.04 12.88 13.89 27.50
52 17.18 24.57 16.76 19.76 17.04 17.08 13.21 14.15 27.73
53 17.53 20.93 29.06 20.85 17.01 17.58 13.08 14.58 29.95
54 16.60 21.02 16.57 18.49 16.48 16.69 12.72 13.50 24.48
55 18.40 20.86 71.61 23.55 17.89 18.28 13.50 14.99 31.50
56 16.82 20.55 16.52 18.61 16.71 16.85 12.25 13.86 19.21
57 18.64 21.67 16.56 21.11 18.33 18.60 13.67 15.53 21.96
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Table 8.8: Average CPU usage per time period (sec/period)

method
Network

1 2 3 4 5 6 7 8 9
LS 10 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.13

ICLS
20 1.30 1.30 1.36 1.88 1.45 1.40 1.49 1.30 5.60
21 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.19

FCLS

30 0.71 0.84 0.71 1.03 0.77 0.75 0.82 0.71 3.90
31 0.07 0.09 0.07 0.08 0.08 0.08 0.08 0.07 0.31
32 0.70 0.89 0.71 1.05 0.79 0.77 0.81 0.71 3.89
33 0.72 0.80 0.72 1.02 0.77 0.74 0.83 0.71 3.98

BU

40 0.47 0.47 0.59 0.54 0.50 0.49 0.52 0.47 1.61
41 0.16 0.17 0.17 0.17 0.17 0.17 0.16 0.16 0.51
42 0.10 0.10 0.11 0.11 0.11 0.11 0.10 0.11 0.23
43 1.20 1.41 1.10 1.14 1.01 0.88 1.16 0.81 1.30
44 1.14 1.42 1.13 1.15 1.05 0.90 0.89 0.80 1.16
45 0.57 0.88 0.55 0.58 0.55 0.56 0.54 0.70 1.02
46 0.98 1.47 0.96 1.10 0.87 0.93 1.07 0.92 1.12
47 1.17 1.48 1.08 1.09 0.90 1.06 1.17 0.89 1.18
48 1.16 1.36 1.05 0.99 0.84 0.92 1.14 0.97 1.17
49 1.09 1.45 1.02 1.09 0.84 0.96 1.04 0.92 1.14
50 1.04 1.08 1.08 1.11 1.00 0.90 1.04 0.94 1.15
51 1.07 1.56 1.08 1.14 1.00 0.90 1.04 0.94 1.15
52 1.12 0.61 1.08 1.26 0.95 1.04 1.05 0.92 1.05
53 0.97 1.39 0.61 0.84 1.01 0.95 1.15 0.94 1.13
54 1.17 1.45 1.19 1.13 1.05 0.93 1.26 0.87 1.11
55 0.59 0.50 0.81 0.68 0.58 0.56 0.62 0.50 2.47
56 0.55 0.50 0.72 0.61 0.53 0.48 0.53 0.49 1.97
57 0.64 1.08 0.86 0.84 0.64 0.60 0.65 0.57 2.79
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Table 8.9: Rankings of evaluation criteria
 average over 10 networks: 

- Split Error, EE-Flow Error, Link-flow Error-

method
Network

1 2 3 4 5 6 7 8 9
LS 10 25,25,25 25,25,25 23,23,24 25,25,25 25,25,25 25,25,25 25,25,25 24,24,25 25,25,25

ICLS 20 17,17,17 19,20,20 15,15,12 17,16,16 17,17,19 17,17,18 17,17,8 15,15,18 19,19,9
21 21,21,18 23,23,21 16,16,13 21,21,17 18,18,20 21,21,19 21,21,9 16,18,19 23,23,8

FCLS

30 19,19,12 20,21,18 18,18,4 19,18,14 19,19,10 19,19,13 19,19,5 20,19,14 22,22,6
31 22,22,15 24,24,19 21,21,9 22,22,15 23,23,12 22,22,16 22,22,7 22,22,17 24,24,5
32 20,18,9 22,19,15 18,18,4 20,19,12 21,21,8 18,18,11 18,18,4 21,21,13 20,20,4
33 18,20,13 21,22,22 18,18,4 18,17,13 20,20,11 20,20,14 20,20,6 19,20,15 21,21,7

BU

40 15,15,3 16,16,1 13,12,1 14,14,1 13,13,1 14,14,1 13,13,2 17,16,4 13,13,1
41 16,16,2 17,17,2 14,14,2 15,15,2 14,14,2 15,15,2 14,14,1 18,17,5 14,14,2
42 12,12,21 10,10,16 11,11,21 12,11,22 9,9,21 12,12,20 10,10,23 9,9,20 6,5,15
43 6,6,5 4,4,7 7,3,11 5,6,5 4,4,5 3,3,4 2,2,13 3,3,3 4,3,14
44 5,5,4 5,5,6 6,2,10 8,7,4 3,3,4 2,2,5 11,11,18 2,2,2 5,4,13
45 24,24,24 12,12,17 22,22,22 23,24,24 24,24,24 24,24,24 24,24,24 23,23,24 16,16,12
46 10,10,14 9,7,13 9,9,19 4,4,8 11,11,13 9,9,9 5,4,11 8,7,6 10,10,17
47 4,4,7 3,3,10 2,4,14 3,2,9 6,6,7 5,4,7 4,3,12 6,8,8 7,7,19
48 11,11,8 6,6,11 10,10,18 9,8,10 12,12,9 10,11,10 6,6,14 12,11,12 12,12,16
49 9,9,10 8,8,12 8,8,20 6,5,7 10,10,14 11,10,8 12,12,19 7,6,7 11,11,18
50 8,8,16 13,14,23 2,4,14 10,10,19 8,8,18 8,8,17 8,7,16 11,12,11 9,9,21
51 7,7,11 7,9,4 2,4,14 7,9,11 7,7,15 7,6,12 7,5,15 10,10,10 8,8,20
52 3,3,19 11,11,24 2,4,14 2,3,18 5,5,17 4,5,15 3,8,20 4,4,16 2,2,22
53 2,2,20 1,1,8 24,24,23 11,12,20 2,2,16 6,7,21 9,9,17 5,5,21 3,6,23
54 1,1,1 2,2,9 1,1,8 1,1,3 1,1,3 1,1,3 1,1,10 1,1,1 1,1,11
55 13,13,22 14,13,5 25,25,25 16,20,23 15,15,22 16,16,22 16,16,21 14,14,22 18,18,24
56 14,14,6 15,15,3 12,13,3 13,13,6 16,16,6 13,13,6 15,15,3 13,13,9 15,15,3
57 23,23,23 18,18,14 17,17,7 24,23,21 22,22,23 23,23,23 23,23,22 25,25,23 17,17,10



105

Equations (Flow E): 9
Figures (Flow F): 9
Lemmas (Flow L): 9
Tables (Flow T): 9

9. Experiments with Empirical Data
9.1 Introduction

In this chapter the experiments of the previous chapter will be repeated with empirical data.
The findings of the previous chapter are used to limit the experiments to the methods that were
shown to give good results with simulated data. The parameter optimization methods and the
traditional Kalman method are used as a reference. In addition to the variants that were tested
in the previous chapter, variants are also tested that use historical data. A complete overview
of the methods that are tested is given in section 9.2.

Data have been collected on the Amsterdam beltway for three weeks. A number of practi-
calities are dealt with in section 9.3. These concern the selection of a study area, checking the
data for this area, the conversion of the input data in order to match the moving time coordi-
nate system, and the recovery (if possible) from missing data.

A completely observed EE-table is not available, e.g. the true EE-flows can not be used in
the evaluation. Instead the link-flow error criterion that was discussed in the previous chapter
is used. The results are presented in section 9.5.

9.2 Solution algorithm alternatives

The results presented in the previous chapter give rise to the selection of BU methods 46
and 47 (see tables 8.3, 8.4) as methods with the best properties for practical use. These meth-
ods will therefore be tested with empirical data. As a reference the parameter optimization
methods 20 (ICLS) and 30 (FCLS) will be used, as well as the standard Kalman method 55
(presented as a special case of the BU method).

Method 56 is the method that is identical to method 46, except for the fact that it uses the
MAP-PCG postprocessing routine rather then the SE-RM postprocessing routine. Therefore,
method 56 can be used as a part of the strategy described in section 8.5, to make plausible that
method 46 produces more accurate EE-flow estimates than the FCLS method, without using
direct observations of EE-flows.

In addition to these comparisons, the use of historical data using the recipe described in
chapter 7 is evaluated. This requires the specification of two extra method parameters. The
purpose and values of these parameters are described in tables 9.1 and 9.2 that supplement
tables 8.3 and 8.4.
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Little can be said in advance about the best value for α. Therefore three values (1, 0.9 and
0.8) are tested. Both method 46 and method 47 are tested with and without the use of historical
patterns. The methods with which these patterns are computed are identical to the methods
from which the parameters are used. All resulting method variants are listed in table 9.2.

Table 9.1: Solution algorithms
-description of options-

Category
Description

Options

Bayesian updating
(BU)

see table 8.3.

M
Number of the method in table 8.4 that contains the options and param-

eter values

α

Historical experience is imposed through a steering parameter u(t). In
chapter 6 it was shown that the use of the default model (6.5) implies the
following value for u(t) (see equation (6.9) ):

u(t)≡bp,k(t+1)-bp,k(t)-(1−α)(b(t)-bp,k(t))
where bp,k(t) represents a historical pattern of type p, updated until and
including day k, and α is a design parameter that represents the strength
with which the state is pulled back to its historical average.

In our examples, only one historical pattern is used, which is the week-
day pattern. This pattern has been computed by averaging the estimates
over all available weekdays, i.e.:

bp,k(t)≡

where  is the estimated vector of split probabilities, computed with
method M.

bd M, t( )
d weekdays∈

∑

bd M, t( )
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9.3 Network and data

For the collection of data the MARE system has been used. MARE is a research facility
connected to the national Motorway Traffic Management (MTM) system. Data was collected
between the 12 th and the 30 th of April 1994. Figure 9.1 gives an impression of the network
that was originally taken into consideration. Each link that is supplied with one or more induc-
tion loops is indicated with a number. This number corresponds with the number that is used
internally in the MARE system. For each induction loop one minute aggregated volume
counts and arithmetic speed averages are stored by the MARE system.

9.3.1  Collection of motorway traffic data in the Netherlands

In the Netherlands the MTM system plays an important role in collecting traffic data. The
primary objectives of MTM is the upstream warning for congestion and slow traffic. It is
claimed that this leads to a significant decrease in risk of pile ups and incidents (-50%), an
increase of flow (+5%) and a decrease of traveltime (-15%) (Source: AVV, 1994). Earlier ver-
sions of this system are known as MCSS and MCSS+, see Westerman (1994).

Motorway sections on which MTM is installed are equipped with dual induction loops on
all lanes with intervals of approximately 500 meters. For research purposes a data collection
facility exists, the MARE system. MARE enables the storage in a file of traffic data for a
number of pre-specified locations. These data are aggregated to one-minute periods, and
involve average speed, flow, and a number of status variables, AVV (1992). The MARE sys-
tem is intended for off-line applications, but with some minor technical modifications data can
also be obtained on-line, as was demonstrated in the DYNA project Hague Consulting Group
(1994).

Not all collected data are available at a central computer. Data is aggregated and smoothed

Table 9.2: Solution algorithms
- parameter values-

category method
parameter 

values 
in table 8.4:

method used to 
prepare 

historical data:

pull-back 
factor (α)

ICLS 20 20
FCLS 30 30

BU

43 43
46 46
47 47
55 55
56 56
61

46 46
1

62 0.9
63 0.8
64

47 47
1

65 0.9
66 0.8
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Figure 9.1: Representation of the Amsterdam network. The numbers represent a subset of the 
induction loop locations. The emphasized links represent the network that was 
eventually selected for further tests.
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in road-side processors (substations) before transmitted to the central computer. Applications
that use the MARE data, should take the following properties of the MARE data into account.
 • Data are aggregated to one minute periods.
 • The data in the road side substations are examined approximately once a minute. The sub-

stations have no internal clock. As a consequence the length of the observation periods 
depends on the exact time of interrogation. Time stamps are logged together with the obser-
vations.

 • Observed flows are converted to hourly flows and rounded to units of 50 vehicles. This 
implies that vehicle counts are rounded to units of 5/6 vehicle.

 • A minimum of 4 vehicles per minute is ‘observed’ in every substation. For some technical 
reason early versions of MCSS generated dummy vehicles every 15 seconds, if no real 
vehicles were observed. This property is preserved in later versions of MCSS+ and MTM 
and is a constant source of errors, especially at night and on less frequently used links.

 • Flow levels are observed through exponential smoothing of ‘gaps’ in the traffic flow (first 
generation of MCSS substations only). Rather than counting the number of vehicles that 
traverse a screenline the average gap between vehicles is computed through the mechanism 
of exponential smoothing. The smoothing factors can vary per location. As this process is 
irreversible, the exact flows are not known at the central computer.

 • Arithmetic averages of observed speeds are stored whereas harmonic averages are needed 
to compute average travel-times.

 • One minute average speeds are approximated using exponential smoothing (first genera-
tion of MCSS substations only).

 • In general, motorway on- and off-ramps are not explicitly monitored. The detectors of the 
monitoring system are located on the internal links of the motorway. At an aggregate level 
on- and off-ramp volumes can be reconstructed from the observations at the adjacent links, 
if present. Applying this technique to one minute data however, introduces significant 
errors, regularly leading to negative flows. A factor that makes the problem worse is that 
the accuracy of induction loop detectors decreases in areas with many lane changes, which 
is typical for the vicinity of on- and off ramps.

9.3.2  Selection of the data

A prerequisite to apply split ratio methods is that for each on-ramp, the entry volumes can
be reconstructed. Preferably the same applies to the off-ramps. Detailed inspection of the net-
work configuration and the locations on which link volumes have been counted has revealed
that for many corridors, observations corresponding to one or more on-ramps or off ramps are
unavailable, either due to the absence of induction loops or due to apparent errors in the loop-
data. A relatively long corridor that is sufficiently monitored is highlighted in figure 9.1 and is
shown in detail in figure 9.2. This corridor was used for further analysis.

After selecting the study area the next step is to check the data and to decide which days to
use. As a group of comparable days is needed to compute a historical pattern, it was decided
not to use data from days in the weekends.

The remaining days were tested for missing data or severe incidents. Data are labelled as
‘missing’ when the detection status that is stored along with the other data indicates that the
detection system has been dead or not been working properly.

For inspecting the data a computer program was implemented. This program collects data
from various files and then presents a contour plot of the speed as a function of time and loca-
tion, overlaid with a plot of the missing data, see figure 9.3. The speeds that are presented in
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this figure are smoothed in time (5 minutes) and space (2 locations). Any severe incident or
massive occurrence of missing data can easily be spotted by viewing the graph.

 Figure 9.3 and similar plots that can be produced for the other days in the dataset show that
datasets without missing data do not exist. Although the Bayesian updating methods that have
been implemented ignore data that have been labelled as missing, the missing data would be
disruptive to the evaluation criterion, and should therefore not be used while evaluating the
methods.

In many cases it is possible to recover from missing data especially as far as the link vol-
umes is considered. For example some of the detectors in the sequence 36-47 (see figure 9.2)
are not working, a link volume can still be produced by using the remaining detectors. The
three graphs on the right in figure 9.3 show datasets for which the loopdata have been merged.
Eventually, from the twelve available days, nine have been selected on the basis of the graphs
for further use.

To judge the effects of the network size, tests have been performed with three network vari-
ants. These are shown in figure 9.4. Each variant is a subnetwork of the network shown in fig-
ure 9.2. In addition to this, experiments were carried out with aggregation levels of 10 minutes
and 5 minutes. This leads to a total of six network variants which are listed in table 9.3. The
quantities σb

2, σq
2 and σy

2 could not be directly observed. The values that have been used
were determined by experimenting.

 305

 34

 35

 36
 37
 38
 39

 40

 41

 42
 43

 44
 45

 46

 47

 49

 491

 131 132 133 135 136 137 138 139 140 141 210 211
2101

2111

Figure 9.2: Detailed view of study area. The network contains 5 entrances and 5 exits and has a 
total length of 11 km.
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9.3.3 Preparation of the data

Conversion of the raw data to a moving time coordinate system
To adjust the data to the moving time coordinate system that is used internally in the esti-

mation methods the data have to be converted from ‘real time’ to ‘moving time coordinate
time’. The idea behind this conversion is that each vehicle that travels from A to B on the net-
work contributes to observations only in one period according to the moving time coordinate
system. This conversion was performed on the one minute data. Let y’k(t) represent the obser-
vations represented in the real time coordinate system, and let dk represent the travel delay in
periods from location 1 to location k, then the conversion to the moving time coordinate sys-
tem was done in the following way:

yk(t)=(1-β).y’k(t+ )+β.y’k(t+ +1)

with: β= (9.1)

where  represents the largest integer smaller then dk. The travel delays dk on which the
conversion is based have been chosen time-invariant. These delays are based on the location
of the induction loop and an average speed that was computed using all available data. It is
recognized that this approach may be improved by using a more advanced way of computing
the travel delays, but for the purpose of comparing the different methods the approach with the
fixed delays was judged to be sufficient.

Table 9.3: Testnetworks

Network specification

A10 B10 C10 A5 B5 C5

network layout
(see figure 9.4) A B C A B C

aggregation 
level

(minutes)
10 10 10 5 5 5

m

(*)see 
tables

8.1, 8.2

4 2 5 4 2 5

n 4 2 5 4 2 5

T 60 60 60 120 120 120

β 0.0002 0.0002 0.0002 0.0001 0.0001 0.0001

q 182.2 279.8 162.9 91.1 139.9 81.5

σq
2 20 20 20 10 10 10

σy
2 20 20 20 10 10 10

Days 1994, April 13, 14, 18, 19, 21, 22, 26, 28, 29

dk dk

dk dk−

dk
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Determining the average travel delay
For the calculation of the average travel delay we need to know the harmonic average of the

speeds, which unfortunately is not stored in the MARE system. Instead, the harmonic average
is approximated in two independent ways. The first method only uses the speeds that have
been observed with the induction loops. The arithmetic averages for the days that have been
considered are shown in table 9.4.

The second method only uses traffic counts. For each pair of locations {k,p}, p>k, the delay
k-p is approximated with maximum inproduct (MIP) delay  as follows:

= y’k(t).[(1-β).y’p(t+ )+β.y’k(t+ +1)]

p>k, p≤l, k=1,2,…l
where: 

β= (9.2)

i.e.  is chosen to be the argument that maximizes the inproduct between the vector of
observations at location k and the vector of observations at location p shifted in time by the
amount . The criterion (9.2) is piecewise linear in . Therefore (9.2) will always
result in an integer approximation of dkp. Moreover, as (9.2) is applied to all pairs of locations
the outcomes might not be consistent, i.e. for some locations k1< k2< k3:

Therefore the consistency of the travel delays is imposed as a separate boundary condition
and the delays {dk,k+1, k=1,2,…l-1} are solved in a least squares manner from the (l2-l)/2
equations that are generated by (9.2). Adding up all delays gives an average travel time for the
11 km. long motorway corridor. This result can be converted in an harmonic speed average.
This average is shown in the column ‘maximum inproduct’ of table 9.4. Based on the data in

Table 9.4:  Two approximations of the average speed

date 
(april 1994)

average speed (km./h.)
arithmetic 
average

maximum 
inproduct

13 101.8 110.0
14 101.3 96.5
18 100.6 103.1
19 105.5 102.2
21 103.9 103.4
22 105.9 97.6
26 103.9 106.1
28 104.2 107.1
29 103.9 106.1

average 103.4 103.6

dkp
MIP

dkp
MIP argmax

d
t

∑ d d

d d−

dkp
MIP

dkp
MIP dkp

MIP

dk1k3

MIP dk1k2

MIP dk2k3

MIP+≠
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table 9.4 it was decided to use an average speed of 104 km./h. to compute the travel delays dk.

Generating missing entry volumes
 The observations 501, 502 and 503, present in networks A and C (see figure 9.4) do not

exist in the original network shown in figure 9.2. These entry volumes needed to be recon-
structed from the internal link volumes.

9.4 Evaluation criterion

The results have been expressed in the link-flow error criterion that has been proposed and
tested in the previous chapter, see equation (8.16). This error criterion measures the accuracy
with which the link volumes are predicted on a number of reference locations.

The reference locations that have been used are (see figure 9.4) locations 136, 140, 211 and
2111 for network A, locations 491 and 131 for network B, and locations 491, 131, 136, 140,
211 and 2111 for network C.

 To some extent this measure gives an impression of the relative performance of various
estimation methods. Figure 9.5 plots the link volumes that have been observed at the reference
locations, averaged over all reference locations and all selected days. The values of criterion
(8.16) should be related to these averages.

9.5 Results

A summary of the results is given in table 9.5. Referring to these results, this section con-
tains discussions on a number of topics. Firstly the optimal length of the aggregation period is
discussed. After that we discuss the influence of using the link-flow error as an evaluation cri-
terion. Subsequently the results obtained with the new BU method are compared with those
obtained with the traditional methods. Finally the influence of using historic data is discussed.

Five-minute aggregation versus ten-minute aggregation level
First we consider the differences between the results for the datasets with ten minute aggre-

gation (A10, B10 and C10) and those with five minutes aggregation (A5, B5 and C5).
In theory, reducing the aggregation level increases the number of observations and the

amount of information that can be retrieved per observation. The latter effect occurs as with
the decrease of the aggregation, the fluctuations in the observed entry volumes increase. On
the other hand if the aggregation level is too low, effects of travel time dispersion will start to
dominate.

Before answering the question which aggregation level to use, the effect of the increase of
aggregation level on the square of the link-flow error criterion (8.16) is analysed, while
assuming that the estimate of the split proportions remains constant. The expectation of the
squared link-flow error is given by:

E[MSElinkflow(t)]=c.E[||H′(t)b(t)-y(t)||2] (9.3)

for some constant c. This can be decomposed into a systematic and a random component:

E[MSElinkflow(t)]=c.||.E[H′(t)b(t)-y(t)]||2+c.E[|| E[H′(t)b(t)-y(t)] - (H′(t)b(t)-y(t))||2 ]
(9.4)

If the aggregation period is doubled from five to ten minutes, the systematic component
quadruples, and the random component doubles in size. Hence, the factor with which the
square of the link-flow error increases if the aggregation period is doubled while the estimates
remain unaltered, is given by:
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Figure 9.5: Observed link volumes at the reference locations as a function of time of day, and 
averaged over all reference locations (see figures 9.4A,B,C) and all days in dataset (see 
table 9.3).
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(4C1+2C2)/(C1+C2) (9.5)

with:

C1=||.E[H′(t)b(t)-y(t)]||2

C2=E[|| E[H′(t)b(t)-y(t)] - (H′(t)b(t)-y(t))||2 ] (9.6)

This factor is bounded by:

2<(4C1+2C2)/(C1+C2)<4 (9.7)

If in reality this factor would be higher then four, then this would indicate a deterioration of
the estimates as a result of the increase of aggregation period. On the other hand if this factor
is lower than two, then this can only be explained by an improvement of the estimates. Con-
sidering the data in table 9.5, the factor with which the square of the link-flow error increases
when doubling the aggregation period usually is in the interval [2,4] but occasionally exceeds
the value of 4, for example for the combination of method 46 and networks C5 (29.95) and
C10 (13.48) this factor is 4.94. Therefore the use of an aggregation period of five minutes
seems to be justified.

Influence of the link-flow error criterion
As direct observations of EE-flows are not available with the Amsterdam dataset, the only

evaluation criterion that can be evaluated is the link-flow error criterion (8.16). The properties
of this error criterion have been extensively discussed in section 8.3 under the title ‘comparing
evaluation criteria’ (page 93). Some of the pitfalls that have been mentioned in that discussion
could easily lead to misinterpreting the results in table 9.5. Examples will be given below.

The main problem with the link-flow error criterion is that is systematically favours the
ICLS, FCLS and BU methods that use MAP postprocessing. In table 9.5 method 20 (ICLS),
30 (FCLS) and 55, 56 (BU+MAP) are of this type, see table 8.4.

Table 9.5: Link-flow errors (veh./period)
- average over 9 networks of criterion (8.16)-

categor
y

method network
- M α A10 B10 C10 A5 B5 C5

ICLS 20 20.80 14.03 22.00 12.18 8.81 12.92
FCLS 30 20.87 16.44 22.19 12.16 9.86 13.02

BU

43 18.05 15.39 25.79 10.51 9.28 12.68
46 18.56 16.02 29.95 10.58 9.53 13.48
47 18.59 15.37 27.09 10.81 9.29 12.96
55 17.65 16.05 35.60 10.61 9.54 14.83
56 16.92 16.05 19.92 10.39 9.54 11.82

61
46

1 18.72 15.99 33.18 10.45 9.52 13.81
62 0.9 15.78 15.86 20.21 9.86 9.43 11.76
63 0.8 15.89 15.74 22.55 9.92 9.39 12.35
64

47
1 18.96 15.37 30.10 10.82 9.27 13.32

65 0.9 15.99 15.22 19.64 9.93 9.17 11.56
66 0.8 15.80 15.15 20.52 9.91 9.17 11.73
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As an example of this phenomenon consider the fact that for all datasets, method 56
(BU+MAP) has a lower link-flow error than the FCLS method 30. As method 46 (BU+SE) is
identical to method 56 except that it uses the subjective expectation (SE) postprocessing rou-
tine instead of the maximum aposteriori (MAP) postprocessing routine, the error of estimation
of method 46 in terms of EE-flow error may be assumed to be lower than that of method 56
(see conclusions chapter 8). Nevertheless for dataset C10, and to a lesser extent, network C5
method 46 results in a higher link-flow error then method 30. A similar phenomenon is
observed with method 43 and 47 in combination with dataset C10.

It should be noted that this phenomenon is related to inaccuracies in evaluating the expecta-
tion of a TMVN distribution, and only occurs if the probability of sampling a value from this
distribution within the hypercube [0,1] is too low (see section 8.3, page 93). It might be possi-
ble to overcome this problem by developing a more advanced version of the SE postprocessing
routine.

Another example where the link-flow error criterion seems to favour one method over the
other stems from comparing the performance of method 20 (ICLS) and method 30 (FCLS) on
datasets B10 and B5. The split probabilities estimated by these methods may be inspected
using stacked plots, see figure 9.6. In these plots, the top lines represent the sum of all split
estimates. It is apperent that method 20 systematically underestimates the split proportions.
This problem is corrected by imposing the equality constraints (method 30), however this
appears to have an adverse effect on the link-flow error.

Comparison of the new BU method with traditional methods
The main novelties of the method developed in chapters 4-6 relative to the traditional

Kalman filter are the absence of recursive constraining, the use of an SE postprocessing rou-
tine, the use of an approximation for the covariance matrix of the measurement error, and the
possibility for using historic information. In table 9.5 the methods that incorporate these novel-
ties are methods 43, 46 and 47, and their variants using historic information, methods 61-66.

Methods 20 and 30 may be considered as representatives of the traditional ICLS and FCLS
parameter optimization methods, method 55 coincides with the traditional Kalman filter.
Although the method uses a covariance matrix identical to method 46. Finally, method 56 is
some intermediate form, it is identical to method 55, except for the fact that it does not use
recursive constraining.

With the exception of the results for dataset C10, which were discussed above, the results
for the methods 43, 46 and 47 tend to be better then those for the traditional methods 20, 30
and 55, despite the biased link-flow error evaluation criterion. Figure 9.7 shows a comparison
between method 30 and method 46. This plot is representative for the comparison of the Baye-
sian update methods with FCLS methods. During the first periods the FCLS method corre-
sponds with a lower link-flow error but, after a number of periods the estimates of methods 46
result in more accurate link-flow predictions.

As far as it is possible to analyse the influences of the novelties of the new methods sepa-
rately using the link-flow error criterion, these will be discussed below.

The advantages of not applying recursive constraining become clear by comparing the
results of method 55 and 56. In all instance method 56 leads to equal or lower link-flow errors.

The advantages of applying SE postprocessing can not be made clear by using the link-flow
error criterion only. For example, on the basis of the link-flow error criterion, one would con-
clude that method 56 produces more accurate estimates of split proportions than method 46.
However, in all instances where this could be checked, method 46 produced the most accurate
split estimates in terms of EE-flow error.
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The advantages of using an accurate approximation of the measurement error covariance
matrix can be seen by comparing the results for, on the one hand, methods 43 and 47, and, on
the other hand, method 46. These methods are identical except for the fact that methods 43
and 47 use a the PEBA and DPEBA covariance matrix respectively, while methods 46 uses
the ALF covariance matrix. On average the results for methods 43 and 47 are slightly better,
as was the case with synthetic data (see arrow ‘i’ in figure 8.8). Between methods 43 and 47,
method 43 gives better results in terms of the link-flow error criterion. This was also found in
the previous chapter, as can be seen in table 8.7, but is no reason to assume that the estimates
of method 43 are ‘better’ in terms of the split error criterion.

The influence of historic information
The use of historic information clearly leads to better scores on the link-flow error crite-

rion, see for example figure 9.8. The main improvements occur due to more accurate link-
flow predictions in the first periods. The results are however highly sensitive to the parameter
α, that determines with what strength the state is attracted to its historical mean. The value
α=1 corresponds with the model that the state equals an historical average, increased with an
independent process x(t), see equation (6.5). The influence of historical information is now
limited to predetermined values of u(t), derived from changes in the historical pattern from
period to period. For values α<1 the value of u(t) also depends on a second component that is
derived from the discrepancy between b(t) and the historical average.The accumulated effect
of u(t) is now potentially larger, since the second component only fades away if b(t) equals the
historical average.

 Of the three values that were tested, α=0.9 gave the best results according to the link-flow
error criterion. The results obtained with α=1 (methods 61 and 64) hardly are an improvement
over their corresponding methods (46 and 47). The probable explanation for this is that the
values of u(t) that correspond to α=1 are negligible.

Discussion
The large extent to which the ranking according to the link-flow error criterion and the

ranking according to, for example, the EE-flow error criterion are inconsistent was unfore-
seen, nor have such findings been reported in earlier literature.

This phenomenon forces one to consider for which purpose EE-matrices are estimated. For
example if EE-matrices are estimated for the purpose of making short term traffic predictions
under average conditions the results reported in this chapter suggest that the best matrix in
terms of EE-flow does not necessarily give the best link-flow predictions. On the other hand if
the estimated EE-matrix is used to predict the effect of a control measure that relates to a spe-
cific group of EE-flows, e.g. a lane closure, an EE-matrix with a low EE-flow error is
required.

This suggests that the general approach to EE-estimation should be not to estimate a single
‘best’ EE-matrix, but instead to define an objective function, and subsequently estimate an
EE-matrix in such a way that the objective function is minimized.

Method 56 serves as an example of such an approach: although simulations produce strong
evidence that this method results in higher EE-flow errors then method 46, of all methods that
do not use historical information (including method 46), this method produces the most accu-
rate link flow predictions.
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9.6 Conclusions

The experiments with empirical data largely confirm the outcomes of the simulations in
chapter 8. Relative to the FCLS method, an average reduction of 7% in the link-flow error over
the datasets with 5 minute aggregation was obtained with the BU method that was shown to
give the lowest error of estimation for synthetic data.

 Even though the link-flow error criterion that was used is biased in favour of parameter
optimization methods that were used as a reference, such as FCLS, the new Bayesian updating
methods gave rise to a lower error according to this criterion.

An aspect of the new method that has not been tested before is the use of historic informa-
tion. Implementation of the default model that was described in chapter 6 has led to a signifi-
cant improvement in the accuracy with which link-flows are predicted.

Within the class of methods not using historic data, the most accurate link-flow predictions
are obtained with a variant of the new method of which previous experiments have shown that
it performs poor in terms of EE-flow error relative to other Bayesian updating methods. This
suggests that the general approach to EE-estimation should be not to estimate a single ‘best’
EE-matrix, but instead to define an objective function, and subsequently estimate an EE-
matrix in such a way that the objective function is minimized.

time (hours)

Figure 9.8: The influence of using historic information. Method 62 is identical to method 46, 
except for the use of historic information (α=0.9).
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10. Conclusions
10.1 Research findings

This thesis describes research into the problem of tracking time varying EE-travel demand
from time series of observations, applied to small networks such as motorway corridors. To
eliminate the underspecification that was shown to be inherent to this problem a model
referred to as the motorway model was specified.

Central to this model is the assumption that entry volumes, which may vary from period to
period, distribute themselves with near constant fractions over all reachable exits. From the
viewpoint of an observer, EE-flows may be considered as outcomes of a number of random
trials, governed by slowly varying split probabilities, bij(t), that define the probability that a
vehicle entering at entrance i in period t will be destined for exit j (chapter 1).

Usage of the motorway model refines a number of earlier proposed dynamic approaches.
For example in the motorway model, the split probabilities supersede the split proportions as
the unknown parameters. This implies that a part of the variation in EE flows that was for-
merly subscribed to variation in the unknown parameters, is now described statistically by a
random selection process that is inherent to individual motorists making uncoordinated travel
decisions. The split probabilities implicitly reflect the prevailing traffic conditions and travel
demand on the full network. However, no dependencies of EE-flows on other processes in the
traffic system, or implied mutual relations between EE-flows of such dependencies, are
imposed on these flows (chapter 2).

The objective of this thesis was not only to improve the theoretical underpinning, but also
to expand the practical applicability of dynamic EE-estimation methods. The commonly used
restrictions that the entry flows are exactly known, traffic counts do not involve internal links,
and traveltimes are small relative to the length of the discretisation period are relaxed by
explicitly taking errors in entry volume observations into account, allowing for the use of
internal link counts, and relaxing the assumption of small traveltimes into the assumption of
small traveltime dispersion (chapters 1, 2).

Taking the motorway model as a point of departure, a second step in the research involved
deriving system properties following from the model, deriving estimators for its parameters,
and investigating how additional sources of information may be used to improve the esti-
mates.

The assumptions in the motorway model imply that the expectation of traffic counts is a
linear function of the unknown split probabilities, and give rise to a linear measurement equa-
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tion that enables the estimation of the split probabilities using standard techniques such as least
squares, constrained least squares or the Kalman filter. A novel theoretical result that was
obtained is the covariance matrix for the measurement error. Knowledge of this matrix in com-
bination with appropriate statistical techniques such as the Kalman filter helps to improve the
estimates of the split proportions. As the derived matrix is a function of the unknown split pro-
portions, the result can only be used as a basis for approximations of the true matrix, for exam-
ple by substituting the most up to date point estimate for b(t) (resulting in a Point Estimate
Based Approximation, PEBA) or by using the most up to date subjective probability distribu-
tion of b(t) (resulting in a Distribution Based Approximation, DBA) (chapter 5).

The conclusion from studying the methods that have been proposed in literature to estimate
the split proportions is that none of them does so in a completely satisfactory manner. Parame-
ter optimization methods such as Fully Constrained Least Squares (FCLS) offer no possibility
to employ the derived statistical properties of the observations, while the Kalman filter does
not deal with the inequality constraints that apply to b(t) in a proper manner (chapter 3).

To overcome these problems a new method referred to as Bayesian updating was proposed.
The new method is based on adopting a Truncated Multivariate Normal (TMVN) distribution
for the split probabilities and updating this distribution using Bayes rule if new observations
become available. It was shown that if the shape of the likelihood function corresponds to
MVN, then the updated distribution remains in the class of TMVN distributions, and the
parameters that characterise the updated distribution follow from applying the well known
Kalman measurement update equations. The method is exact if b(t) does not vary in time. For
the time extrapolation no exact analytical expression has been found. However, it is expected
that if the time variation in b(t) is small, a good approximation is obtained if the standard
Kalman time extrapolation equations are used (chapter 4).

To derive point estimates from the above described recursion, a postprocessing routine is
needed. Two types of such routines have been identified. The first type involves computing the
point estimate that maximizes the aposteriori density. The second type involves evaluating the
expectation of the aposteriori density. Point estimates of the first type are referred to as Maxi-
mum APosteriori (MAP) estimates, while estimates of the second type are referred to as Sub-
jective Expectation (SE) estimates. In theory, SE estimates minimise the (L2) error of
estimation, but their computation is not analytically tractable. Approximations of SE estimates
may be obtained by averaging a large number of vectors sampled from the TMVN aposteriori
distribution. TMVN random vectors may be generated simply by generating MVN random
vectors and rejecting all outcomes that do not satisfy the inequality constraints. This strategy is
referred to as Randomized Mean (SE-RM), but fails if the probability of sampling valid out-
comes is too low. As an alternative to the SE-RM point estimate an analytical approximation
was derived, referred to as Approximated Mean (SE-AM). The computation of MAP estimates
is more straightforward, and comes down to minimizing a quadratic function under inequality
constraints (chapter 4).

EE-flows that are estimated from time series of traffic counts may be improved by using
additional sources of information. The analysis of empirical data has revealed not only that
split proportions vary little between consecutive time periods but also that there is very little
variation in the splits when corresponding periods of departure on multiple days are consid-
ered. To use this property for the improvement of estimates of split probabilities, a model was
proposed that expresses that the split probabilities vary randomly around historic patterns.
From this model a state equation was derived that combines usage of the assumption of slowly
varying split probabilities with usage of historical data (chapter 6).
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In the future, new technologies will make it possible to trace individual vehicles in an auto-
mated manner either by installing Automated Vehicle Identification (AVI) equipment at multi-
ple locations or by letting vehicles transmit their trajectories. This will generate data on traffic
characteristics that could not be directly observed at low cost before, such as trajectories and
traveltimes. To benefit from these data in full, new estimators are needed. As an example, the
usage of automated license plate readers is considered. Although the problem of updating trip
matrices from direct observations such as travel surveys and license plate surveys has been
extensively studied in the past, the present context contains many new elements, such as the
requirement to process the license plate data in combination with traffic counts, the presence
of recording errors, the dynamic context, and the absence of any restrictions on the locations
of the license plate readers. At first sight the problem of updating EE-flows from license plate
data has little in common with EE-flow estimation from traffic counts. However, by construct-
ing a fictional hypernetwork it was shown that an analogy exist, and that in fact all theory that
was proposed earlier can be recycled to solve the problem of estimating EE-flows from com-
bined data. This analogy remains valid if the trajectory information only applies to a repre-
sentative sample of all vehicles (the probe vehicles). It may hence be concluded that the
proposed Bayesian estimator may be used as a part of a framework to estimate travel demand,
that is highly flexible with respect to the type of input data that are required. For example such
a framework may use a mixture of historic data, traffic counts, automated license plate sur-
veys, and data obtained from a group of vehicles that is equipped with a transponder (chapter
7).

In the last part of the thesis, many of the theoretical findings have been put to the test in
two series of experiments. The first series of experiments involved synthetic EE-flows and
traffic counts that were generated according to the specifications of the motorway model. The
second series of experiments involved traffic counts collected on Amsterdam beltway during
one month.

The tests with the synthetic data very clearly show that usage of the new BU method
reduces the error of estimation considerably, relative to usage of existing methods, such as
FCLS and the Kalman filter. Relative to the FCLS method a reduction of 31% of the average
RMSE of the split probabilities was obtained. The largest part of this reduction (67%) should
be subscribed to the improved treatment of the inequality constraints by the new estimator
combined with the use of the SE-RM postprocessing routine. A smaller part of the reduction
(33%) is due to the use of a more accurate system specification, and the PEBA and DBA cov-
ariance matrices that follow from this specification. If instead of the PEBA or DBA matrices,
a matrix based on the Average Link Flows (ALF) is used then only a small part of the reduc-
tion is sacrificed again (-8%), while the advantage of such an approach is that it may be
applied without having knowledge of the system specification (chapter 8).

An unexpected result was that a reduction of the error of estimation does not necessarily
result in an increase of the accuracy with which link volumes are predicted (link-flow error).
For example, otherwise identical Bayesian updating methods consistently result in a lower
error of estimation but a higher link-flow error, if the SE-AM instead of the MAP postprocess-
ing routine is used. Although in theory this phenomenon does not occur if the randomized
mean (SE-RM) point estimates is computed, in practice SE-RM point estimates can not
always be evaluated. In such cases the postprocessing routine reverts to computing the SE-
AM value after all. If the link-flow error criterion is used as an evaluation criterion then the
above mentioned reduction of 31% reduces to only 3.7% for synthetic data, and 7% for empir-
ical data (chapter 8, 9).
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In the experiments with empirical data the estimates can only be evaluated according to the
link-flow error criterion, as the correct EE-matrix is not known. However, the link-flow error
criterion was shown to be biased in favour of the FCLS method and BU methods that use MAP
postprocessing. Nevertheless a few conclusions can be drawn. Firstly, in all cases, usage of
historic information reduces the link-flow errors. Secondly: a variant of the new BU method
that uses MAP postprocessing outperformed the FCLS and the traditional Kalman filter in all
cases. Thirdly: except for one of the six datasets considered, the BU methods that use SE-RM
postprocessing outperformed the FCLS method, despite the biased error criterion (chapter 9).

Although this does not show from the link-flow errors, from experience it is known that SE-
RM postprocessing should be preferred over MAP postprocessing. Therefore the results sug-
gest that it may be possible to develop a third postprocessing routine that estimates link flows
even more accurate than can be done using MAP estimates. More in general this means that
the postprocessing routine should be chosen depending on the purpose for which the EE
matrix is estimated.

10.2 Practical recommendations

In this thesis new theories have been proposed that enable dynamic EE-estimation proce-
dures to take into account properties of realistic traffic data, such as errors occurring in obser-
vations of entry volumes and spatial correlations between observations that arise when all
available traffic counts are used. Although for a given set of observations these theories help to
reduce the error of estimation, there is a limit to these reductions, and the best attainable accu-
racy eventually depends on the quality and amount of observations.

Practitioners who design and implement the data collection system hence play a key role in
creating favourable circumstances for EE-estimation and applications requiring EE-flow esti-
mates such as short term traffic prediction and control. Based on the experiences with data
retrieved from the traffic surveillance system that is currently in operations on a large part of
the motorways in the Netherlands, recommendations for improvements are summarized in the
following list:
 • Preferably induction loops should be present at all entries and exits of the motorway net-

work. Entry and exit volumes can be reconstructed by taking the difference between the 
observed volumes at the two adjacent internal links, however, this would imply inclusion of 
the counting errors at the internal links in the observation of potentially low entry or exit 
volumes, resulting a very low ratio between average volume and counting errors. This prob-
lem is made worse by the fact that the accuracy of induction loop detectors decreases in 
areas with high rates of lane changing, which is typical for areas containing on- or off 
ramps. Also uncertainty about traveltime introduces extra errors in reconstructed volumes.

 • If vehicle counts and observed speeds need to be aggregated in time at road side processors, 
for example as a result of restrictions on storage or communication capacity, this should be 
done with care as to minimise the information loss arising from this aggregation. In Dutch 
practice some older equipment aggregates traffic counts by maintaining a moving average 
of the gaps in the traffic flow. Observations of vehicle speeds are aggregated by computa-
tion of the arithmetic average. For EE-flow estimation, we are mainly interested in traffic 
counts and average traveltimes. Therefore if data are aggregated this should be done by 
totalling the traffic counts over the aggregation period and by storing the harmonic average 
of the observed speeds.

 • Better documentation of the surveillance system is needed, and a database containing accu-
rate information about the network layout and the exact position of the counting locations 
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should be maintained.
 • At present, any number of observed vehicles equal to or lower than four per minute results 

in a reported traffic count of four. This is to prevent the system from labelling a set of 
detectors as malfunctioning. This property is a constant source of errors, especially at night 
and on less frequently used links. It is therefore recommended that the detection of dead 
detectors is done in another way.

The above recommendations apply to the existing traffic data collection system that is
entirely based on induction loops. Apart from improving this existing system, the employment
of techniques that enable the tracing of individual vehicles is a cost effective way to gain
insight in traveltimes and routes. In this thesis it was shown that, as far as the estimation of
EE-matrices is concerned, no strict requirements apply to the location and accuracy of identi-
fication. Thus, equipment may be used that does not give one hundred percent recognition,
and this equipment need not be installed at all entrances and exits. This opens up the possibil-
ity to use low cost equipment such as cameras combined with image processors, possibly even
using camera’s that are already in place for other purposes.

10.3 Further research

A number of limitations and assumptions were incorporated in the problem described in
the first chapter of this thesis. Relaxing these would give rise to new research. Also a number
of new questions have arisen during the current research project. As neither the available time,
nor the size of this report allow for all of these issues to be addressed in the present context,
these are left as future research topics. The following list consists of topics on which research
is in progress or topics that may be expected to be taken on by researchers in the near feature.
 • Taking into account traveltime dispersion. Traveltime dispersion occurs if vehicles travel at 

different speeds. As a result, a one to one correspondence between trip departure interval 
and interval of vehicle observation as assumed in the moving time coordinate system can 
no longer be maintained. Instead the vehicles that depart in one particular interval may con-
tribute to traffic counts in multiple intervals, according to a traveltime distribution. This 
distribution can either be prespecified, or could be estimated.
If the traveltime distribution is prespecified, the measurement equation given by (2.23)
should be replaced by an equation that specifies the measurement as a linear function of a 
vector consisting of split probabilities in multiple periods. Such a vector is known as an 
augmented state, and a linear state equation, similar to (2.7), that describes the evolution of 
the augmented state in time can be given. Given the linear state- and measurement equa-
tions, all parameter estimation methods described in this thesis can again be applied, 
although it should be noted that these methods do not account for the serial correlation that 
will be displayed by the measurement error.
A second possibility is to estimate the traveltime distribution simultaneously with the split 
proportions. One way this can be done is to introduce a separate split parameter for each 
combination of EE-pair and traveltime, see e.g. Bell (1991b). However, this leads to an 
increase of the number of unknown parameters with a factor that equals the number of peri-
ods involved in the traveltime distribution. Typically this factor would equal two or three, 
making it possible to distinguish between fast and slow platoons, or between fast, average 
and slow platoons.

 • Taking into account route choice. Again, route choice can be taken into account by pre-
specifying the route choice proportions, or by introducing a separate split parameter for 
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each path flow. Neither of these two approaches would necessitate fundamental changes to 
the methods proposed in this thesis, although the moving time coordinate system will have 
to be reconsidered, as different routes are unlikely to have equal traveltimes.

 • Time dependent assignment maps. The assignment map, U, specifies the relation between 
EE-flows and link flows, and in this thesis was assumed to be given by a constant matrix. 
To establish the assignment map for general networks, information is needed on route 
choice proportions, average traveltime delays, and traveltime dispersion. The issue of spec-
ifying the assignment map is hence closely related to the two issues mentioned above. The 
methods presented in this thesis would not fundamentally change if the fixed assignment 
map were to be replaced by an estimate that depends on observations taken from the net-
work. Such an assignment map can again be regarded as prespecified, as long as the estima-
tion of the assignment map and the estimation of the EE-flows are done separately. Again, 
prespecifying the assignment map can be avoided by introducing separate split parameters 
for each combination of departure interval, route and traveltime at the cost of a vast 
increase of the number of unknown parameters.

 • Combined estimators. The three cases mentioned above imply taking into account phenom-
ena such as travel time dispersion, route choice and time dependency of the assignment 
map, and hence correspond to relaxations of assumptions used in this thesis. It was sug-
gested that these phenomena should be incorporated either by prespecification or by the 
introduction of extra split parameters. Neither of these suggestions endanger the linear 
structure of the estimation problem, which means the estimation procedures proposed in 
this thesis can still be used. Moreover, in this context the notion of prespecification can be 
extended to cases in which a phenomenon, e.g. travel time, is estimated, e.g. from observa-
tions of speeds, as long as the estimation of this particular phenomenon is done separately 
from the estimation of the EE-flows.
However, in reality EE-flows and variables representing phenomena such as travel time, 
route choice and travel time dispersion are strongly correlated, and it may be expected that 
part of the future research will address the simultaneous estimation of these variables with 
the EE-flows. On the other hand, this estimation problem is highly nonlinear. 
A number of techniques are likely to be applied to this estimation problem. One of these is 
the extended Kalman filter which is based on a linearization of the problem. Other tech-
niques one can think of are iterative procedures based on an operator to which the solution 
of the estimation problem is a fixed point. Much research is still to be done into the effec-
tiveness of these procedures for this particular class of problems.

 • Utilizing static models in dynamic EE-matrix estimation. In the past, a wide range of OD 
estimation methods has been developed to estimate static OD-matrices using single, instead 
of time series of traffic counts. These methods rely on models that describe mutual relations 
between OD-flows or dependencies of OD-flows on observable data such as land use data. 
These models require a certain level of time and spatial aggregation to be sufficiently plau-
sible, and this complicates the application of these models to the dynamic EE-estimation 
problem. Nevertheless, it is conceivable that in some form, static models can be used as an 
extra source of information in dynamic EE-estimation.

 • Utilizing dynamic data in static OD-matrix estimation. When the objective is to estimate a 
static matrix instead of a dynamic matrix, calibration of a static model from traffic counts, 
survey data and land use data is a frequently used approach. The aggregation of time series 
of observations that occurs in such an approach results in an information loss. One possibil-
ity that has not been investigated before in this context, is to involve estimates of split pro-
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portions that are derived from the time series of observations in the calibration of the static 
model.

 • Applying the BU method to other estimation problems. In this thesis the Bayesian updating 
method was used to replace well known parameter estimation methods such as least 
squares and the Kalman filter, and it was shown that such a change resulted in a reduction 
of the error of estimation. This suggests that a similar change could also be appropriate in 
other cases where least squares or the Kalman filter are used under circumstances where 
the unknown state satisfies inequality constraints and is known to vary only slowly in time. 
A case in which the method can be applied straightforwardly, is that of updating a prior 
OD-matrix from traffic counts. For example Bell (1991a) reported that if a prior matrix is 
updated using traffic counts by the unconstrained minimization of a generalized least 
squares objective function, the result did not always satisfy the nonnegativity requirement. 
In Bell (1991a) it was therefore suggested to use constrained least squares instead. The 
results presented in this thesis suggest that the Bayesian Updating method would have been 
an even better alternative. Other examples of methods that could be improved in this way 
are found in Maher (1983) and Pursula and Pastinen (1993).

 • Predicting link volumes. One of the findings of the present research project was that the 
estimator that produces the EE-flow estimates with the lowest error of estimation does not 
necessarily produce link flow predictions with the lowest error of estimation. Especially 
least squares estimators and estimators similar to least squares produce estimates with a 
relatively high error of estimation but which imply link flow predictions that are more 
accurate then those obtained with the Bayesian updating method. It was also shown that 
this is caused by the postprocessing algorithm. This suggests that special postprocessing 
algorithms should be designed for the purpose of predicting link flows.
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Appendix A: Constrained minimization of quadratic functions
A.1 Introduction

A number of the methods described in chapter 3, require the solving of an inequality con-
strained quadratic minimization problem. Since some of these problems tend to be computa-
tional demanding a considerable amount of attention has been paid to the implementation of
efficient algorithms. The findings on this subject are reported in this appendix, and result in
the recommendation of two algorithms for the constrained minimization of quadratic func-
tions. The first method finds the exact solution using an iterative search strategy with pro-
jected conjugate search directions. This method is described in section A.4. The second
method finds an approximated solution using considerably less computation time, and is
described in section A.5. The exact algorithm will be particularly useful to evaluate different
methods for split-estimation in a laboratory environment. The second algorithm facilitates
large scale application of split-estimation methods.

A.2 General problem description

The general problem under consideration is the following constrained quadratic minimiza-
tion problem:

minimize: J= - 2Ψ′b + b′Ωb
subject to either:

-a- 0≤b≤1
or:

-b- 0≤b , π′b≤1 (A.1)

where π is a repeating column matrix of appropriate size. If the constraints (A.1-a) apply then
all constraints are orthogonal. If the constraints (A.1-b) apply then (m-1) non-orthogonal con-
straints exist, represented by π′b≤1.

A.3 Interior steepest descent

The first method that was tested represents a well known technique known as interior
steepest descent. This method starts at an arbitrary point in the feasible region, b(0), and then
iteratively approaches a solution. Each iteration a new search direction, s(k), is determined and
a line minimization in that search direction is performed, leading to the next iteration point
b(k+1), i.e.:
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b(k+1)=b(k) + µs(k) (A.2)

The search direction is obtained by projecting the steepest descent direction on the space of
feasible directions. The space of feasible search directions is the intersection of all half-spaces
defined by the binding constraints.

For problem (A.1-a) the projection of the negative gradient on this space is quite simple due
to the orthogonality of the constraints. For this purpose we use lemma A.1 that states that the
projection on the intersection of orthogonal halfspaces can be computed by the sequential pro-
jection on each halfspace. i.e. the projection comes down to setting those elements of the
search vector to zero that correspond with violations of the binding constraints.

Lemma A.1: Projection on the intersection of orthogonal halfspaces
If P is the projection operator, i.e. PF(x) is projection of x on the space F, and if {F1, F2,…Fq}
are halfspaces defined by mutually orthogonal constraints, then:

PF1∩ F2∩ …∩Fq
(x)=PF1

( PF2
 (… PFq

(x)…)) (A.3)

Proof The constraints that define F1∩ F2∩ …∩Fq can be written in the form Cx≥0 with 
C a matrix of height q and width corresponding to the length of x. Assume Cx>0 (Otherwise, 
without losing generality drop the constraint that is not violated).
Since cp.cq=0 the projection of x, x q, satisfies Cx q=0. The projection of x is hence given by:

xq = x-C’(CC’)-1Cx (A.4)

Since the rows of C are orthogonal, equation (A.4) can be rewritten as:

x q = x - ( c1’c1/c1c1’+ c2’c2/c2c2’ +…+ cq’cq/cqcq’ ) x (A.5)

This is exactly the result that is obtained by the sequence:

x 0 = x
x p = x p-1 - ( cp’cp / cpcp’ )x p-1

p=1,2,…q (A.6)

This sequence defines the consecutive projections on F1, F2,…Fq. End of proof

For problem (A.1-b) the problem of projecting the gradient is slightly more complex since
it is not trivial in advance which constraints will be active after the projection. As an example
consider figure A.1. In this example the non-negativity constraint e2 may or may not be active
after the projection. However there are no more than m-1 binding non-orthogonal constraints
represented by the equation π′b≤1. It can be shown that the projected gradient can be obtained
by first projecting on the non-orthogonal constraints, and subsequently on a combination of
the non-orthogonal and orthogonal constraints, to prevent the latter constraints from being vio-
lated. Algorithm A.1 summarizes this approach.

After the search direction has been determined, a line minimization is performed. This is
done by substituting (A.2) in (A.1). This leads to a quadratic equation in µ, which is convex
due to the non-negativity of the matrix Ω. Consequently a unique solution exists for the step-
size µ. To ensure that the next iteration point is in the interior of the feasible region, all con-
straints are checked. If any constraint is violated then µ is set to the maximum value that does
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not lead to violation of any constraints.
The interior steepest descent method has the advantage of ease of implementation and

robust performance. However it is also known for its slow convergence. This problem deteri-
orates if the matrix Ω is ill-conditioned. Ill conditioning occurs if the rows of a matrix are
nearly dependent. Translated to the practical case of estimating EE-matrices, this means that if
little variations in entry volumes occur, the corresponding matrix Ω is ill-conditioned and the
computation time needed to solve (A.1) increases.

Practical experiments indicate that computation times can easily exceed the time available
if results need to be produced in real-time.

A.4 Projected conjugate gradients

Unconstrained conjugate gradient method
In unconstrained minimization of quadratic functions, the conjugate gradient method is a

Algorithm A.1: Find search direction

Procedure find search direction
Step 1 

set s as the negative gradient
determine the set B of binding constraints

Step 2
determine the set V of violated constraint by s
if B∩V≠∅

redefine s as the projection of s on the constraints in the set B∩V
repeat step 2

else
stop

-∇J
-∇J

e1

e2

f1

e1

e2

f1

Figure A.1: Projection of the negative gradient on non-orthogonal constraints. In the first case 
(left) e2 is not active, in the second case e2 is active
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very effective method. A conjugate gradient method consists of a sequence of line searches,
each search in a conjugate direction relative to Ω, i.e. if p≠q,

s(p)Ωs(q)=0 (A.7)

It can be shown that, in case of exact line minimizations and absence of rounding errors, the
exact minimum of (A.1) can be found in N steps, where N is the dimension of Ω, for details see
Lootsma (1984). A problem remains the determination of conjugate search directions. For this
purpose a number of possibilities exist. An elegant way to generate conjugate search directions
was proposed by Fletcher and Reeves (1964), and is given by:

(A.8)

The advantage of this method is that only the last search direction needs to be stored, and
that the method is easy to implement.

Projected Conjugate Gradient (PCG) method
To apply a method such as described above to the constrained problem (A.1) a projection

strategy can be used similar to the method used with the interior steepest descent method. If
the search direction is violating a binding constraint then it is truncated. However the trunca-
tion causes the new search direction to be no longer conjugate to the previous ones.

A response to this is to ‘reset’ the method to a steepest descent direction every time a new
constraint becomes binding. As long as no alterations are made in the binding constraints set
the theory described above is still valid and the solution will be found in less than mn steps.
However, experiments have shown that in some cases constraints keep jumping in and out of
the binding constraints set, causing the method to behave very similar to the steepest descent
method, resulting in slow convergence.

A less well motivated but more satisfactory method in practice is to refrain from resetting to
steepest descent at least during a number of searches.

Stop criterion
Another practical aspect is the stopping criterion. This aspect not only applies to the conju-

gate gradient method but also to iterative search methods like the interior steepest descent
method. As in the constrained case no real conjugate directions are used and because rounding
errors cause the line-minimizations and search directions to be inexact, the method will usu-
ally not find the exact solution of the minimization problem. Instead the method keeps finding
solutions with lower target values, asymptotically touching the true minimum.

A stop criterion is needed to check if the real solution has sufficiently been approached.
This involves making a trade-off between computation-time and accuracy. Also an analysis is
needed of the accuracy that is attainable, given the machine accuracy and the structure of the
problem. A number of possibilities exist:
 • Checking for the relative improvement of the objective function. As long as the objective 

function significantly improves convergence is not reached. The relative improvement is 
however no sufficient condition for convergence: a number of steps with slow improvement 
can be alternated with steps of large improvement.

 • Checking for change in the solution vector. Also this is a necessary but not a sufficient con-
dition for convergence, due to the same argument as above. Above that, care should be 

s k( ) t( ) J b k( ) t( )( )∇−
J b k( ) t( )( )∇

2

J b k 1−( ) t( )( )∇
2

s k 1−( ) t( )+=
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taken imposing this convergence criterion, as in cases with ill conditioned matrices the 
machine accuracy might prevent the algorithm from reaching the stop criterion resulting in 
an infinite loop in the program.

 • Checking for a maximum number of iterations. This is neither a necessary nor a sufficient 
condition. In practice it can however be used in combination with above conditions. Espe-
cially this condition is useful as a ‘safety catch’, if above conditions cannot be reached this 
stop criterion will eventually abort the program.

 • Checking the theoretical optimality conditions. The Karush-Kuhn-Tucker (KKT) theorems, 
see Bazaraa et al. (1993), provide a necessary and sufficient criterion for optimality. This 
optimality check involves the inversion of a matrix with a height that corresponds with the 
number of binding constraints (maximum mn) and is therefore potentially expensive.

The optimization method that is implemented contains a mix of above stopping conditions.
First a check is performed for change in the solution vector. If this change is below a certain
threshold then the theoretical optimality conditions are checked. To prevent the algorithm
stranding on degenerate problems, also a check for a maximum number of iterations is
included.

Smart initialization
The EE-splits are re-evaluated each time slice. By initializing the iterative procedure with

the solution that was obtained during the previous time slice, fast convergence is stimulated.

A.5 Iterative solving

The procedures described above are iterative search methods, aimed at generating the exact
solution to the minimization problem (A.1). In this section a heuristic algorithm is presented
that will either find the exact or the approximated solution, using a drastically reduced compu-
tation time relative to the exact methods.

The idea of this method is simple: first the unconstrained solution to (A.1) is computed.
This can be done with one matrix inversion. Then a check is performed for any violated non-
negativity constraints. If any constraints are violated, then a linear equality constraint is
imposed on the corresponding variables, implicitly assuming that for these variables the non-
negativity constraint will be binding in the optimal solution. This process is repeated until a
solution is found that does not violate any non-negativity constraints.

There is no check performed on the violation of unitary constraints, if necessary the final
solution is truncated by setting all elements exceeding one to the unitary value. The ratio
behind this is that the split parameters will generally be closer to zero then to one, and that
there is only a small probability that the unconstrained solution to (A.1) will violate the uni-
tary constraint. Algorithm A.2 summarizes the approach.

If the unconstrained solution violates none or one non-negativity constraint, this algorithm
finds the exact solution in at most two steps. If the unconstrained solution violates multiple
non-negativity constraints then the solution that is found may be suboptimal, as is shown in
figure 11.1. This figure contains a constructed example of a quadratic function of which the
unconstrained minimum violates two non-negativity constraints, but for which in the con-
strained solution only one constraint is binding. Therefore the solution that is generated by the
iterative solving method must be considered as an approximated solution, that may be inexact
if the unconstrained solution violates multiple non-negativity constraints.
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Algorithm A.2: Iterative solving

Iterative solving procedure 
Step 1

Solve the unconstrained problem 
Step 2 

if no elements of the solution vector are negative: 
stop

else
introduce a constraint for each negative element, 
setting this element to zero

Step 3
Solve the problem again, using the extra constraints from step 2.
Go to step 2

-3 -2 -1 0 1 2 3 -2

-1

0 

1 

2 

3 

4 

x1

x2

Figure 11.1: Example of a quadratic function for which the method of iterative solving does not find 
the exact minimum.
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Appendix B: Evaluation of the Mean and Variance of TMVN 
Distributions

This appendix contains numerical approximations for the normalization constant, true
mean, and true variance associated with the truncated normal distribution that has been widely
used in this thesis. These quantities have been expressed in terms of the well known error
function, i.e.:

(B.1)

For this function a number of numerical approximations exist, see for example Abramowitz
and Stegun (1968). An approximation that seems sufficiently accurate for our purposes is:

erf(x)=

(B.2)

However, in most computing environments, a library routine will be available that evaluates
the error function with an even better accuracy.

Lemma B.1: Normalization constant of a truncated normal random variable. Let x
be a random variable with a truncated normal distribution with parameters µ and σ2, i.e.:

p[x]= (B.3)

Then the value of the normalization constant satisfies:

C[µ,σ] =  + (B.4)
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Proof The normalization constant is defined as:

C[µ,σ] = (B.5)

To simplify this integral we use a change of coordinates. Set:

, i.e.: (B.6)

Consequently (B.5) changes in:

C[µ,σ] = (B.7)

Result (B.4) now follows from decomposing (B.7) in two separate integrals. Note that this 
result also applies if µ is negative or larger than one. This follows from the property that
erf(-x)=-erf(x).

End of proof

As an illustration the value of normalization constant has been plotted in figure B.1 for a
range of values for µ and σ2.

1

σ 2π
exp
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2
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2

−( ) xd
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Figure B.1: Contourplot of the normalization constant, as a function of the parameters µ and σ2

of a truncated normal distribution.
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Lemma B.2: Let x be a random variable with a truncated normal distribution with
parameters µ and σ2, then the expected value of x satisfies:

E[x]=  + µ (B.8)

Where C[µ,σ] is given by (B.4).

Proof The expected value of a truncated normal variable is defined as:

E[x] = (B.9)

From applying a change of coordinates, it follows that

E[x]=

=  + (B.10)

Observing that: , and combining with (B.7) leads to the required 

result. End of proof

In figure B.2 the true mean is plotted for a range of values of µ and σ2. As an extra check
on result (B.8) the true mean has also been evaluated by numerical integration for a number of
points.

Lemma B.3: Let x be a random variable with a truncated normal distribution with
parameters µ and σ2, then the variance of x satisfies:

var[x] = -(E[x]−µ)2

(B.11)
Where C[µ,σ] follows from lemma B.1, and E[x] follows from lemma B.2.
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Proof The variance of a truncated normal variable is defined as:

var[x] =E[x2]-E2[x]= - E2[x] (B.12)

From which it follows that:

var[x] = - E2[x]

= 

- E2[x] (B.13)

Observe that: , and that:

Figure B.2: Contourplot of the true mean, as a function of the parameters µ and σ2 of a 
truncated normal distribution.
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. Furthermore apply equation (B.7). Now it follows that:

var[x] = + µ2 - E2[x]

(B.14)
Substituting the boundaries of the integral and applying equation (B.7) once more, results in:

var[x] =

+2µ  + µ2 - E2[x] (B.15)

The first term of the second line in above equation exactly matches: 2µ(E[x]-µ), see equation 
(B.8). Now the required result follows directly. End of proof

In figure B.3, the true variance is plotted as a function of the parameters µ and σ2 of a trun-
cated normal distribution. As an extra check on result (B.12) the variance has also been evalu-
ated numerically for a number of points.
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Figure B.3: Contourplot of the true variance, as a function of the parameters µ and σ2 of a 
truncated normal distribution.
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Above lemma’s apply to univariate truncated normal distributions, whereas most truncated
distributions used in this thesis are multivariate. A well known property of MVN distributions
is that the individual elements of a MVN distributed vector have a normal distribution. In the
following example it is checked whether a similar property applies to the marginal density of a
TMVN distribution. The example will show that this is generally not the case.

Example B.1: Marginal density associated with a TMVN distribution.
Let x be a two dimensional, zero mean random variable with a TMVN distribution, i.e.:

x∼TMVN[0,Σ], , (B.16)

In this example we will attempt to compute the marginal density of x1 and are particularly

interested in whether or not this density is given by: x1∼TMVN[0,σ11
2].

The probability distribution of x is given by:

p[x]= I[0,1](x1)I[0,1](x2)

= I[0,1](x1)I[0,1](x2) (B.17)

The marginal density of x1 is obtained by integrating p[x] over the value of x2, i.e.:

p[x1]=

= I[0,1](x1)

(B.18)

After the integration has been performed, the second factor in above equation will change
in a factor that still depends on x1. In fact, according to lemma (B.1) this factor proportional to:

 +
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(B.19)
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value. In this case (B.18) retains the shape of a TMVN distribution with parameters 0 and σ1
2.

In all other cases deviating distributions arise. We must therefore conclude from this example
that in general the marginal distribution of a TMVN distribution is not truncated normal.
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Appendix C: Mathematical Preliminaries
In chapter 5 various approximations are derived of the covariance matrix that applies to the

measurement error that was defined by (5.3). Each approximation is characterized by the
information on which the matrix will be conditioned. This appendix contains a number of
lemmas and some notational conventions that help to facilitate the derivations in chapter 5.

C.1 Properties of expectation and covariance

The derivation of the conditional expectations and covariance matrices mentioned in the
introduction are straightforward, but require some lengthy derivations. The following two
lemmas help to keep the length of the derivations in chapter 5 to a minimum.

Lemma C.1:  Let x and y be (univariate) random variables, of which the joint density
px,y(x,y) is defined for all pairs {x , y|x∈X, y∈Y}. Let the operators Ex[.] and Ey[.] be defined
as the expected value of its operands with respect to distributions x and y respectively, and let
Ex|y[.|y] be defined as the expected value operator with respect to the conditional density x
given y = y. Furthermore let the random variables x and y satisfy all necessary conditions in
order for Ex[.], Ey[.], and Ex|y[.|y] to exist. Then:

Ex[x] = Εy[ Εx|y[x|y] ]. (C.1)

Proof (derived from Sage and Melsa, 1971)

Ex[x] = ∫X x px(x) dx
= ∫X∫Y x px,y(x,y) dxdy

= ∫Y∫X x px|y(x|y) py(y) dxdy
= ∫YΕx|y[x|y] py(y) dy

= Εy[ Εx|y[x|y] ]
A similar lemma applies to multivariate random variables. and to scalar or vector valued

functions of random variables, i.e. if f(.) is a function of defined on the domain X then it holds
that:

 Ex[f(x)]=Εy[ Εx|y[f(x)|y] ] (C.2)

Moreover parallel to lemma C.1 it can be shown that if z is a random variable:

Εx|z[x|z]=Εy|z[ Εx|y,z[x|y,z] ] (C.3)
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Lemma C.2: (Corollary): Let the covariance operator, covx[.,.], be defined by: 
covx[x,x']=Ex[x.x ']-Ex[x]Ex[x'], and let the conditional covariance operator, covx|y[.,.|y] be
defined by: covx|y[x,x'|y]=Ex|y[x.x'|y]-Ex|y[x|y]Ex|y[x'|y], then:

covx[x,x'] = Ey[ covx|y[x,x'|y] ] + covy[ Ex|y[x|y],Ex|y[x'|y] ] (C.4)

Proof By definition it holds that:

covx[x,x']=Ex[x.x ']-Ex[x]Ex[x']
As a result of lemma C.1 this transforms in:

covx[x,x']=Ey[ Ex|y[x.x'|y] ]- Ey[Ex|y[x|y]].Ey[Ex|y[x '|y]]
Some rearranging gives:

covx[x,x']= Ey[ Ex|y[x.x'|y]- Ex|y[x|y].Ex|y[x '|y] ]
 + Ey[Ex|y[x|y]Ex|y[x'|y]]- Ey[Ex|y[x|y]].Ey[Ex|y[x'|y]]

which is by definition equal to the required result. End of proof

Lemma C.1 states that the expected value of a random variable x is equal to the expected
value of a random value Εx|y[x|y], i.e. the r.v. that is defined by the conditional expectation of x
based on an (arbitrary) random variable y. This result will turn out to be particularly useful if
we need to compute Εx|z[x|z] where z is an observed r.v. while we only have the conditional
distributions px|y and py|z at our disposal. If in addition to this we may assume:

 px|y(x|y)=px|y,z(x|y,z), ∀x, y, z (C.5)

i.e. at all times r.v. y is a sufficient statistic (see Mood et al., 1963) of z for r.v. x, then the fol-
lowing holds:

Εx|z[x|z]=Εy|z[ Εx|y,z[x|y,z] ]=Εy|z[ Εx|y[x|y] ] (C.6)

This equation is the key to obtain the conditional covariance matrix for y(t) in the motorway
model from figure 2.3 since the dependencies in this model define various sufficient statistics,
e.g. q˜(t) is a sufficient statistic of q(t).

To complete this part on the properties of the expectation and covariance, two more lem-
ma’s are given. These lemma’s relate to well known properties of the expectation and covari-
ance operator. For a proof of the scalar case, see for example Mood et al. (1963).

Lemma C.3: For any vector valued random variable x for which the first two moments
exist, holds:

E[x x']=cov[x,x']+E[x]E[x'] (C.7)

Lemma C.4:  For any two vector valued random variables x and y for which the first
two moments exist, and matrices A and B of appropriate size, holds:

cov[Ax,By]=A cov[x,y] B' (C.8)

C.2 Matrix operators

In order to get a compact notation, some special matrices and matrix operators are needed
in the later chapter 5. First introduce the linear operator diag(.). This operator takes a vector as
its argument and puts the elements of this vector on the diagonal of a matrix, i.e.
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Definition: diag(.) operator

D=diag(d) ⇔ Dij=di δij, ∀i, j (C.9)

A property of the diag(.) operator that is summarized in the next lemma:

Lemma C.5: For arbitrary vectors a and b of equal length it holds that:

diag(a) b = diag(b) a (C.10)

Proof c = diag(a) b ⇔ ci = aibi, ∀i ⇔ c = diag(b) a.

End of proof

Note that diag(.) can not be replaced by a series of matrix multiplications. This can be seen
as follows: for an arbitrary product of two matrices the rank of the product is lower than the
minimum rank of the factors (see Lipschutz, 1968), therefore a diagonal matrix (rank>1) can
never be obtained as a product of a vector (rank=1) and a matrix.

The diag(.) operator is a key to building matrices composed of the elements of a vector.
A second matrix operator is the element by element multiplication of two matrices of equal

size. Again, this so-called array multiplication, denoted as ‘⊗’, seems to be no standard
vocabulary of linear algebra.

Definition: Array multiplication

C=A⊗B ⇔ Cij=AijBij,∀i, j (C.11)

The array multiplication is related with the earlier introduced diag(.) operator via the fol-
lowing lemmas:

Lemma C.6: for any two vectors a and b and matrix C op appropriate size, the follow-
ing holds:

diag(a) C diag(b) = (a b')⊗C (C.12)

Proof D = diag(a) C diag(b) ⇔ Dij = aibjCij, ∀i, j ⇔ D = (a b')⊗C

Lemma C.7: for any vector a and two matrices B and C of appropriate size, the follow-
ing holds:

B⊗(diag(a) C) = diag(a) (B⊗C) (C.13)

Proof D = B⊗(diag(a).C) ⇔ Dij = BijaiCij, ∀i, j ⇔ D = diag(a).(B⊗C)

End of proof

C.3 Special matrices

To compute the flow, entry volumes are multiplied with split-proportions e.g. fij=qibij. This
can be written as a matrix multiplication with the aid of the diag(.) operator and a special vec-
tor q, e.g.:

f=diag(q)b,
q=(q1,q1, …q1, q2,q2, …q2, … … , qm,qm, …qm)' (C.14)
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The vector q consists of m series of n identical elements. Converting a vector of length m to
a vector of length mn consisting n series of m identical elements above each other, can be done
by multiplying the vector with a so called repeating column matrix. The nonzero elements of
such a matrix, that will be denoted as πm,n or simply π, are defined by:

πx(i,j),i = 1
x(i,j)=(i-1)n+j

i=1,2,…m , j=1,2,…n (C.15)
Hence, q = π q, and f=diag(π q)b.
The structure of the matrix π is illustrated in figure C.1.

π = mn

m

1
1
…
1

1
1
…
1

…
…

1
1
…
1 






















         

Figure C.1: Structure of a repeating column matrix
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Nederlandse Samenvatting (summary in Dutch)

Dynamic Origin-Destination Matrix Estimation on Motorway Networks

Nanne van der Zijpp

Aanleiding voor dit onderzoek

Het verschijnsel congestie is de laatste jaren meer en meer kenmerkend voor het verkeers-
beeld geworden. Ondanks het actieve beleid dat de overheid voert om de automobiliteit terug
te dringen, mag op grond van factoren zoals demografische ontwikkeling, groeiende welvaart,
veranderende arbeidsmarkt en een toenemende hoeveelheid vrije tijd, voorlopig nog een aan-
zienlijke jaarlijkse groei in de automobiliteit worden verwacht. Het traditionele antwoord op
deze ontwikkeling, uitbreiding van de fysieke infrastructuur, zal gezien het ruimtebeslag dat
dit met zich meebrengt, en de eisen die wij stellen aan onze leefomgeving, steeds moeilijker
en vooral kostbaarder zijn in te passen. Dit heeft tot gevolg dat steeds hogere eisen aan de
planning van infrastructurele uitbreidingen en aanpassingen worden gesteld, en dat steeds
meer aandacht wordt besteed aan dynamische verkeersbeheersing en actuele reizigersinforma-
tie.

Voor een modelmatige ondersteuning van zowel planning als dynamische verkeersbeheer-
singsegelen, zijn de laatste jaren tal van modellen ontwikkeld, zoals dynamische toedelings-
modellen, micro simulatie modellen, en modellen die in detail het route keuze gedrag van
automobilisten onder invloed van pre-trip en en-route informatie beschrijven. Belangrijk ken-
merk van deze modellen is dat zij expliciet rekening houden met de variatie van de diverse
grootheden in de tijd, in plaats van te werken met gemiddelde waarden. Hierdoor kunnen ver-
schijnselen zoals congestie nauwkeuriger worden gemodelleerd. Deze methoden stellen ech-
ter hoge eisen aan invoerdata, omdat ook de vervoersvraag nu dynamisch moet worden
gespecificeerd.

Dynamische Herkomst-Bestemmings tabellen

De vervoersvraag wordt doorgaans samengevat in Herkomst-Bestemmings (HB) tabellen,
ook wel HB-matrices genoemd, die voor iedere combinatie van herkomst en bestemming het
geprognotiseerde aantal ritten bevat. Een dynamische HB-tabel kan worden beschouwd als
een serie HB-tabellen die zijn gerangschikt op basis van de vertrekperiode. Een typische
lengte van zo’n periode is vijf minuten. In dit proefschrift staat het schatten van deze dynami-
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sche HB-tabellen centraal.
Traditionele methoden om HB-tabellen te schatten zijn het uitvoeren van enquêtes, het

voorspellen van verplaatsingen op basis van socio-economische gegevens, de kalibratie van
een verklarend model of het aanpassen van een oude matrix aan tellingen. Voor het schatten
van dynamische HB-tabellen voor real-time toepassingen gaat de belangstelling uit naar
methoden die matrices schatten op basis van data die op automatische wijze kunnen worden
verzameld. In de praktijk bestaan deze data met name uit tijdreeksen van telgegevens. Het
schatten van HB-matrices op basis van telgegevens is echter een ondergespecificeerd pro-
bleem, wat wil zeggen dat meerdere HB-tabellen passen bij één set telgegevens.

Alhoewel alle traditionele methoden voorzien in een manier om deze onderspecificatie op
te heffen, is het nadeel van deze methoden dat hun toepassing een zekere mate van aggregatie
vereist. Bij het aggregeren van tijdreeksen van telgegevens gaat informatie verloren, terwijl de
uitkomsten van geaggregeerde methoden niet het gewenste detail niveau bevatten.

Voor dynamische toepassingen wordt daarom sinds enkele tientallen jaren onderzoek
gedaan naar een klasse van dynamische HB-schatters die ook op gedisaggregeerd niveau kan
worden toegepast.

Deze schatters zijn gebaseerd op de aanname dat voor iedere toerit de toeritintensiteit zich
in nagenoeg constante fracties over de afritten verdeelt. Deze fracties worden in de literatuur
aangeduid als splitproporties of afslagfracties. Door de variatie van toeritintensiteiten in de
tijd, kunnen de opeenvolgende telgegevens worden beschouwd als lineair onafhankelijke com-
binaties van splitproporties, zodat deze laatsten in theorie na verloop van tijd uit de telgege-
vens zijn op te lossen. Echter, als gevolg van het optreden van telfouten, alsmede random
effecten in de bestemmingskeuze, en in de tijd veranderende herkomst-bestemmings patronen,
moeten splitproporties in de praktijk worden geschat.

Probleemstelling

In dit proefschrift wordt gekeken naar toepassingen van split-ratio-methoden op eenvou-
dige netwerken waarbij routekeuze geen rol speelt, zoals een corridor op een autosnelweg.
Bovendien wordt er vanuit gegaan dat de op het netwerk optredende reistijden voldoende
nauwkeurig bekend zijn. De algemene doelstelling van het beschreven onderzoek is om de
bestaande split-ratio-methoden op een aantal punten te verbeteren. Deze punten vallen uiteen
in de volgende onderzoeksdoelstellingen:
 • Het meer algemeen toepasbaar maken van split-ratio-methoden. In de literatuur worden 

doorgaans een aantal aannames gedaan die de toepasbaarheid van split-ratio-methoden in 
de praktijk sterk inperken. Zoals het uitsluiten van telfouten op toeritintensiteiten, en het 
uitsluiten van telpunten op interne schakels van het netwerk. Bovendien wordt doorgaans 
aangenomen dat de reistijden in het netwerk te verwaarlozen zijn vergeleken bij de lengte 
van de discretisatie periode. In dit proefschrift wordt nagegaan in hoeverre het mogelijk is 
om deze aannames los te laten.

 • Het beter theoretisch onderbouwen van split-ratio-methoden. De in de literatuur beschre-
ven split-ratio-methoden zijn gebaseerd op de aanname van constante of langzaam varië-
rende splitproporties. Vanuit het standpunt van een waarnemer bezien kan er echter hooguit 
sprake zijn van constante of langzaam variërende splitkansen, omdat het kiezen van 
bestemmingen door automobilisten ongecoördineerd plaatsvindt. De hypothese is dat deze 
verbeterde beschrijving van het verkeerssysteem uiteindelijk zal leiden tot betere schattin-
gen van de dynamische HB tabel.
Een tweede aanpassing, die vanuit theoretisch oogpunt zou moeten leiden tot een verbeterd 
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schattingsresultaat is het rekening houden met de afhankelijkheid van telgegevens. Vooral 
als telpunten op interne schakels van het netwerk liggen, vertoont hun conditionele kans-
dichtheid, gegeven de splitkansen, een sterke afhankelijkheid. De in de literatuur beschre-
ven schattingsmethoden houden met deze afhankelijkheid geen rekening.

 • Het verbeteren van de schattingsmethode. De in de literatuur beschreven schatters voor 
splitproporties vallen uiteen in twee categorieën; parameter optimalisatie methoden en sta-
tistische methoden. Binnen geen van de twee categorieën bestaat een schatter die in alle 
opzichten aan de eisen voldoet. Hieruit is de onderzoeksdoelstelling afgeleid dat een 
nieuwe statistische schatter dient te worden ontwikkeld die rekening kan houden met alle 
eigenschappen van het probleem.

 • Het benutten van additionele bronnen van informatie. Naast tijdreeksen van telgegevens 
zijn er nog andere databronnen die van belang kunnen zijn voor het schatten van dynami-
sche HB-tabellen. Twee van deze bronnen worden in dit proefschrift behandeld:
-1- Historische telgegevens. HB-patronen blijken van dag tot dag sterk op elkaar te lijken. 
Het ligt daarom voor de hand om schattingen te baseren op telgegevens van meerdere 
dagen in plaats van telgegevens van slechts één dag.
-2- Automatische Voertuig Identificatie (AVI). In de toekomst zal technologie het mogelijk 
maken om tegen betaalbare kosten individuele voertuigen te herkennen of op automatische 
wijze te volgen, hetzij door de installatie van AVI apparatuur op meerdere plaatsen, hetzij 
door individuele voertuigen informatie over hun routes te laten verzenden. Op deze manier 
zal informatie beschikbaar komen over verkeerskarakteristieken, zoals routes en reistijden, 
die niet eerder direct kon worden waargenomen tegen acceptabele kosten.

 • Het testen van split-ratio-methoden in theorie en praktijk. Er is tot nu toe weinig ervaring 
met het toepassen van split-ratio-methoden. Om meer inzicht in de eigenschappen van deze 
methoden te krijgen zijn experimenten nodig.

Resultaten van het onderzoek

De doelstelling om te komen tot een bredere toepasbaarheid en een betere theoretische
onderbouwing van split-ratio-methoden hebben geleid tot de formulering van het motorway
model. In dit model worden een aantal relaties binnen het verkeerssysteem expliciet vastge-
legd. De belangrijkste kenmerken van het motorway model zijn:
 • Er wordt rekening gehouden met telfouten, ook met telfouten in waarnemingen van toerit 

intensiteiten. Telfouten worden gemodelleerd als stoortermen waarvan de verwachtings-
waarde nul is, en waarvoor een willekeurige variantiewaarde kan worden gespecificeerd.

 • Er wordt uitgegaan van de aanname van langzaam variërende splitkansen in plaats van de 
aanname van langzaam variërende split proporties. Hierdoor wordt een gedeelte van de 
variatie die optreedt in de bestemmings keuze die voorheen werd toegeschreven aan de 
variatie in de onbekende parameters, beschreven als stochastisch verschijnsel. De verande-
ring in de splitkansen van periode tot periode is gedefinieerd als een stoorterm.

 • Tellingen op interne schakels worden toegestaan.
 • De in de literatuur gebruikelijke aanname dat reistijden verwaarloosbaar zijn wordt vervan-

gen door de minder stringente aanname dat de reistijdvariatie verwaarloosbaar is.

Met de formulering van het motorway model is het HB-schattingsprobleem gereduceerd
tot het schatten van de splitkansen in het motorway model op basis van de beschikbare telge-
gevens.

Daarbij wordt er vanuit gegaan dat tellingen een functie zijn van HB-matrix celwaarden, en
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dat deze op hun beurt weer een functie zijn van splitkansen vermeerderd met een stoorterm. In
deze stoorterm komt het verschil tussen splitkans en splitproportie tot uitdrukking. De varian-
tie van deze stoorterm kan worden uitgedrukt in de splitkans. Als tellingen op interne schakels
in het schattingsproces worden betrokken, wordt deze stoorterm op meerdere plaatsen waarge-
nomen. Hierdoor ontstaan afhankelijkheden tussen tellingen, die kunnen worden uitgedrukt in
een covariantiematrix.

Het gebruik van deze covariantiematrix zou in theorie tot betere schattingsresultaten moe-
ten leiden. Omdat de covariantiematrix die werd afgeleid een functie is van de onbekende
splitkansen, kan het resultaat alleen worden gebruikt als een basis voor een benadering van de
echte covariantiematrix, bijvoorbeeld door substitutie van de meeste recente puntschatting van
de splitkansen (voor deze benadering wordt in het proefschrift de term Point Estimate Based
Approximation, -PEBA-, gebruikt) of door gebruik te maken van een kansverdeling van de
splitkansen (deze benadering wordt een Distribution Based Approximation, -DBA-, genoemd).

Voor het schatten van de splitkansen in het motorway model zijn een aantal standaard tech-
nieken in beschouwing genomen, zoals Least Squares, Inequality Constrained Least Squares,
Fully Constrained Least Squares, en het Kalman filter. De bestudering van deze schatters heeft
tot de conclusie geleid dat geen van de bestaande schatters in alle opzichten voldoet. Metho-
den zoals Least Squares en Fully Constrained Least Squares (FCLS) bieden geen mogelijkheid
om de afgeleide statistische eigenschappen te benutten, terwijl het Kalman filter geen moge-
lijkheid biedt om op een goede manier om te gaan met de ongelijkheidsvoorwarden die gelden
voor de splitkansen.

Om deze moelijkheden te ondervangen wordt een nieuwe methode genaamd de Bayesian
Updating (BU) methode voorgesteld. Het kenmerk van een Bayesian methode is dat deze niet
direct resulteert in een puntschatting, maar dat eerst een kansverdeling van de onbekende
grootheid wordt geschat.

De nieuwe methode is gebaseerd op het aannemen van een Truncated Multivariate Normal
(TMVN) verdeling voor de splitkansen, en het aanpassen van deze verdeling volgens het
beginsel van Bayesian updating wanneer nieuwe informatie beschikbaar komt. Het is aange-
toond dat als de vorm van de likelihood functie overeenkomt met MVN, de aangepaste kans-
verdeling in de klasse van TMVN verdelingen blijft, en dat de parameters die de aangepaste
verdeling karakteriseren voldoen aan de wel bekende Kalman measurement update vergelij-
kingen. De methode is exact als de splitkansen constant zijn in de tijd. Voor de tijd extrapolatie
is echter geen exacte uitdrukking beschikbaar. Echter, wanneer de variatie in de splitkansen
klein is, is de verwachting dat de standaard Kalman time extrapolation vergelijkingen een
acceptabele benadering vormen.

Om puntschattingen af te leiden uit de kansverdelingen volgende uit de hierboven beschre-
ven recursie is een z.g. postprocessing routine nodig. Twee klassen van dergelijke routines
worden onderscheiden. De eerste klasse houdt in dat een puntschatting wordt afgeleid door de
aposteriori verdeling te maximaliseren. De tweede klasse houdt in dat de verwachting van de
aposteriori verdeling wordt uitgerekend. Puntschattingen van het eerste type worden aange-
duid met de naam Maximum APosteriori (MAP) schatters, terwijl puntschattingen van het
tweede type worden aangeduid met de naam Subjective Expectation (SE) schatters. In theorie
zouden SE schatters de schattingsfout moeten minimaliseren, maar een analytische uitdruk-
king voor de SE schatter is niet beschikbaar. Benaderingen van SE schatters kunnen worden
verkregen door het gemiddelde te nemen van een groot aantal vectoren die zijn geloot uit de
TMVN aposteriori verdeling. Random vectors voor een TMVN verdeling kunnen worden
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gegenereerd door MVN random vectors te genereren, en alle uitkomsten die niet aan de onge-
lijkheids voorwaarden voldoen te negeren. Deze aanpak wordt aangeduid als Subjective
Expectation - Randomized Mean (SE-RM), maar is alleen praktisch toe te passen als de kans
op het loten van een geldige uitkomst voldoende groot is. Als alternatief voor de SE-RM punt
schatter is een analytische benadering ontwikkeld, aangeduid als Subjective Expectation -
Approximated Mean (SE-AM). Het berekenen van MAP punt schatters kan op meer directe
wijze plaatsvinden, omdat dit neerkomt op het minimaliseren van een kwadratische functie
onder een aantal ongelijkheids voorwarden.

HB-matrices die zijn geschat uit tijdseries van telgegevens kunnen worden verbeterd door
aanvullende databronnen te gebruiken. Analyse van empirisch gegevensmateriaal toont aan
dat de splitfracties niet alleen een kleine variatie vertonen van periode naar periode, maar ook
van dag tot dag, wanneer corresponderende periodes worden vergeleken. Om deze eigenschap
aan te wenden voor een verbetering van de schatting van de splitkansen is een model voorge-
steld dat tot uitdrukking brengt dat splitkansen variëren rondom hun historische waarden. Uit-
gaande van dit model werd een bewegingsvergelijking voor de splitkansen afgeleid waarin de
aanname van langzaam variërende splitkansen wordt gecombineerd met het gebruik van his-
torische data.

Een andere bron van informatie is het gebruik van Automated Vehicle Identification data.
Om deze data volledig te benutten, zijn nieuwe schattingsmethoden nodig. Als een voorbeeld
wordt het gebruik van automatische kentekenplaat lezers beschouwd. Alhoewel het schatten
van HB-matrices van directe waarnemingen zoals enquêtes en kentekenplaat onderzoeken uit-
gebreid onderzocht is in het verleden, bevat de huidige probleemstelling een aantal nieuwe
elementen, zoals de vereiste de kentekenplaat gegevens te verwerken in combinatie met telge-
gevens, de aanwezigheid van afleesfouten in het kenteken materiaal, het dynamische aspect,
en het ontbreken van voorwaarden aan de lokaties waarop kentekens worden gelezen (kente-
kenplaatlezers mogen op willekeurige plaatsen in het netwerk opgesteld staan).

Op het eerste gezicht heeft het schatten van HB-matrices uit kentekenplaat gegevens wei-
nig gemeen met het schatten van HB-matrices uit telgegevens. Maar door de constructie van
een denkbeeldig ‘hypernetwerk’ kan worden aangetoond dat er een analogie tussen deze twee
gevallen bestaat, en dat alle theorie die eerder werd voorgesteld voor het schatten van HB-
matrices uit telgegevens kan worden gemakkelijk kan worden aangepast voor het probleem
van het schatten van HB-matrices uit gecombineerde tellingen-kentekengegevens. Deze ana-
logie blijft ook bestaan als de beschikbare informatie alleen betrekking heeft op een steekproef
uit alle voertuigen (we spreken in dit geval van probes). Er kan daarom worden geconcludeerd
dat de Bayesian schatter kan worden gebruikt als een onderdeel van een raamwerk voor het
dynamisch schatten van HB-matrices, dat zeer flexibel is wat betreft de vereiste waarneming-
sdata. Een dergelijk raamwerk kan bijvoorbeeld gebruik maken van een combinatie van histo-
rische data, tellingen, kenteken plaat gegevens en probe vehicle gegevens.

De theoretische bevindingen uit het proefschrift zijn getest in twee series van experimen-
ten. De eerste serie experimenten werd uitgevoerd met behulp van gesynthetiseerde HB-
matrices en tellingen, welke werden gegenereerd volgens de specificaties van het motorway
model. De tweede serie werd uitgevoerd met behulp van telgegevens die gedurende een
maand werden verzameld op de ringweg Amsterdam.

De experimenten met de gesynthetiseerde data laten duidelijk zien dat het gebruik van de
nieuwe BU methode de schattingsfout aanmerkelijk reduceert, ten opzichte van het gebruik
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van bestaande methodes, zoals FCLS en het Kalman filter. Ten opzichte van de FCLS methode
werd een reductie van 31% in de gemiddelde schattingsfout van de splitkansen verkregen (uit-
gedrukt in RMSE, voert./per.). Het grootste gedeelte van deze reductie (67%) moet worden
toegeschreven aan de verbeterde behandeling van de ongelijkheids voorwarden door de
nieuwe schatter, gecombineerd met het gebruik van de SE-RM postprocessing routine. Een
kleiner gedeelte van de reductie (33%) moet worden toegeschreven aan de betere beschrijving
van de eigenschappen van de tellingen, uitgedrukt in de PEBA en DBA covariantie matrices.
Als in plaats van de PEBA of DBA matrices, een matrix gebaseerd op de Average Link Flows
(ALF) wordt gebruikt, hoeft overigens slechts een klein gedeelte (-7%) weer te worden opge-
offerd, terwijl het voordeel van een dergelijke aanpak is dat deze kan worden toegepast zonder
kennis van de verdeling van de verschillende stoortermen die bij het genereren van de testdata
een rol hebben gespeeld.

Een onverwacht resultaat was dat een reductie in de schattingsfout niet noodzakelijkerwijs
resulteert in een verbeterde nauwkeurigheid waarmee schakel intensiteiten kunnen worden
voorspeld (de link-flow error). Bijvoorbeeld, als in twee verder geheel identieke Bayesian
updating methodes de SE-AM postprocessing routine wordt verwisseld voor een MAP post-
processing routine, leidt dit consequent tot een hogere schattingsfout, maar gelijktijdig tot een
lagere link-flow error. In theorie zou een dergelijk verschijnsel niet mogen gelden voor rand-
omized mean (SE-RM) puntschattingen. Echter, de praktijk is dat SE-RM puntschattingen niet
altijd kunnen worden geëvalueerd. In dergelijke gevallen grijpt deze postprocessing routine
terug op de SE-AM waarde. Daarom reduceert de bovengenoemde verbetering van 31% tot
slechts 3.7% voor de gesynthetiseerde data, en 7% voor de empirische data, wanneer het link-
flow criterium wordt gebruikt als foutmaat.

Bij de experimenten met empirische data worden de schattingen enkel geëvalueerd op basis
van het link-flow error criterium, omdat de echte HB-matrix niet bekend is. Het gebruik van
het link-flow error criterium werkt systematisch in het voordeel van de FCLS methode en de
BU methodes die de MAP postprocessing routine gebruiken. Desalniettemin kunnen toch een
aantal conclusies worden getrokken. Ten eerste; in alle gevallen, leidt het gebruik van histori-
sche gegevens tot een reductie van de link-flow error. Ten tweede; een variant van de nieuwe
BU methode die gebruik maakt van de MAP postprocessing routine, verbeterde de link-flow
error ten opzichte van de traditionele methoden in alle gevallen.

Deze laatste conclusie geldt tevens als het indirecte bewijs dat de BU methode gecombi-
neerd met de SE-RM postprocessing routine ook voor empirische data de meest nauwkeurige
HB-matrix schatting oplevert, omdat de ervaring met gesimuleerde data heeft geleerd dat in
alle gevallen SE-RM postprocessing moet worden verkozen boven MAP postprocessing.
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